A Poincare lemma in Geometric Quantisation
Autor: | Romero Solha, Eva Miranda Galcerán |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions |
Rok vydání: | 2013 |
Předmět: |
Control and Optimization
Integrable system Applied Mathematics foliated cohomology 53D50 integrable system Closed and exact differential forms Geometric quantization moment maps Mechanics of Materials Mathematics - Symplectic Geometry Quantització geomètrica Mathematics::Quantum Algebra FOS: Mathematics Symplectic Geometry (math.SG) Geometric quantisation Lagrangian foliation Gravitational singularity Geometry and Topology Matemàtiques i estadística::Geometria [Àrees temàtiques de la UPC] singularities Mathematics::Symplectic Geometry Mathematical physics Mathematics |
Zdroj: | Recercat. Dipósit de la Recerca de Catalunya Universitat Jaume I UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
DOI: | 10.48550/arxiv.1307.3275 |
Popis: | This article presents a Poincare lemma for the Kostant complex, used to compute geometric quantisation, when the polarisation is given by a Lagrangian foliation defined by an integrable system with nondegenerate singularities. Comment: 19 pages; overall improvement in section 7, including generalisations of some results and the addition of new ones |
Databáze: | OpenAIRE |
Externí odkaz: |