Bi-objective optimal control of some PDEs: Nash equilibria and quasi-equilibria
Autor: | Irene Marín-Gayte, Enrique Fernández-Cara |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla. FQM131: Ec.diferenciales,Simulacion Num.y Desarrollo Software |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
TheoryofComputation_MISCELLANEOUS
Computer Science::Computer Science and Game Theory Control and Optimization Formalism (philosophy) MathematicsofComputing_NUMERICALANALYSIS Mathematics::Analysis of PDEs TheoryofComputation_GENERAL Context (language use) 010103 numerical & computational mathematics Optimal control 01 natural sciences Finite element method 010101 applied mathematics Computational Mathematics symbols.namesake Control and Systems Engineering Nash equilibrium Convergence (routing) Bi objective symbols Applied mathematics 0101 mathematics Navier–Stokes equations Mathematics |
Popis: | This paper deals with the solution of some multi-objective optimal control problems for several PDEs: linear and semilinear elliptic equations and stationary Navier-Stokes systems. Specifically, we look for Nash equilibria associated with standard cost functionals. For linear and semilinear elliptic equations, we prove the existence of equilibria and we deduce related optimality systems. For stationary Navier-Stokes equations, we prove the existence of Nash quasi-equilibria, i.e. solutions to the optimality system. In all cases, we present some iterative algorithms and, in some of them, we establish convergence results. For the existence and characterization of Nash quasi-equilibria in the Navier-Stokes case, we use the formalism of Dubovitskii and Milyutin. In this context, we also present a finite element approximation and we illustrate the techniques with numerical experiments. |
Databáze: | OpenAIRE |
Externí odkaz: |