Bi-objective optimal control of some PDEs: Nash equilibria and quasi-equilibria

Autor: Irene Marín-Gayte, Enrique Fernández-Cara
Přispěvatelé: Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla. FQM131: Ec.diferenciales,Simulacion Num.y Desarrollo Software
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Popis: This paper deals with the solution of some multi-objective optimal control problems for several PDEs: linear and semilinear elliptic equations and stationary Navier-Stokes systems. Specifically, we look for Nash equilibria associated with standard cost functionals. For linear and semilinear elliptic equations, we prove the existence of equilibria and we deduce related optimality systems. For stationary Navier-Stokes equations, we prove the existence of Nash quasi-equilibria, i.e. solutions to the optimality system. In all cases, we present some iterative algorithms and, in some of them, we establish convergence results. For the existence and characterization of Nash quasi-equilibria in the Navier-Stokes case, we use the formalism of Dubovitskii and Milyutin. In this context, we also present a finite element approximation and we illustrate the techniques with numerical experiments.
Databáze: OpenAIRE