MDS symbol-pair codes from repeated-root cyclic codes
Autor: | Junru Ma, Jinquan Luo |
---|---|
Rok vydání: | 2021 |
Předmět: |
FOS: Computer and information sciences
Discrete mathematics business.industry Computer Science - Information Theory Information Theory (cs.IT) Applied Mathematics Singleton bound Root (chord) Cryptography Computer Science Applications Separable space Finite field Symbol (programming) ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION Code (cryptography) Computer Science::Symbolic Computation business Mathematics |
Zdroj: | Designs, Codes and Cryptography. 90:121-137 |
ISSN: | 1573-7586 0925-1022 |
DOI: | 10.1007/s10623-021-00967-4 |
Popis: | Symbol-pair codes are proposed to combat pair-errors in symbol-pair read channels. The minimum symbol-pair distance is of significance in determining the error-correcting capability of a symbol-pair code. Maximum distance separable (MDS) symbol-pair codes are optimal in the sense that such codes can achieve the Singleton bound. In this paper, two new classes of MDS symbol-pair codes are proposed utilizing repeated-root cyclic codes over finite fields with odd characteristic. Precisely, these codes poss minimum symbol-pair distance ten or twelve, which is bigger than all the known MDS symbol-pair codes from constacyclic codes. Comment: arXiv admin note: text overlap with arXiv:2010.04329 |
Databáze: | OpenAIRE |
Externí odkaz: |