Preferred Spatial Frequencies for Human Face Processing Are Associated with Optimal Class Discrimination in the Machine
Autor: | David Masip, Matthias S. Keil, Jordi Vitrià, Agata Lapedriza |
---|---|
Přispěvatelé: | Universitat de Barcelona, Universitat Oberta de Catalunya (UOC) |
Rok vydání: | 2008 |
Předmět: |
Male
Computer science lcsh:Medicine Computational Biology/Computational Neuroscience Artificial face recognition systems Processament digital d'imatges Computer Science/Numerical Analysis and Theoretical Computing Computer Science/Applications Facial recognition system Pattern Recognition Automated Human face recognition (Computer science) Image processing Image Interpretation Computer-Assisted Humans Reconeixement de formes (Informàtica) lcsh:Science Image resolution Reconeixement facial (Informàtica) Multidisciplinary business.industry lcsh:R Visió per ordinador Pattern recognition Pattern recognition systems Processament d'imatges Mutual information Class discrimination Linear discriminant analysis Computer Science/Information Technology Pattern Recognition Visual Reconocimiento de formas (Informática) Face (geometry) Face Pattern recognition (psychology) Visual Perception Psychophysical studies lcsh:Q Female Reconocimiento facial (Informática) Computer vision Spatial frequency Artificial intelligence business Digital image processing Research Article |
Zdroj: | Dipòsit Digital de la UB Universidad de Barcelona O2, repositorio institucional de la UOC Universitat Oberta de Catalunya (UOC) Recercat. Dipósit de la Recerca de Catalunya instname PLoS ONE PLoS ONE, Vol 3, Iss 7, p e2590 (2008) |
Popis: | Psychophysical studies suggest that humans preferentially use a narrow band of low spatial frequencies for face recognition. Here we asked whether artificial face recognition systems have an improved recognition performance at the same spatial frequencies as humans. To this end, we estimated recognition performance over a large database of face images by computing three discriminability measures: Fisher Linear Discriminant Analysis, Non-Parametric Discriminant Analysis, and Mutual Information. In order to address frequency dependence, discriminabilities were measured as a function of (filtered) image size. All three measures revealed a maximum at the same image sizes, where the spatial frequency content corresponds to the psychophysical found frequencies. Our results therefore support the notion that the critical band of spatial frequencies for face recognition in humans and machines follows from inherent properties of face images, and that the use of these frequencies is associated with optimal face recognition performance. |
Databáze: | OpenAIRE |
Externí odkaz: |