COVID-19 Clinical Footprint to Infer About Mortality

Autor: Carlos E. Rodríguez, Ramsés H. Mena
Rok vydání: 2022
Předmět:
Zdroj: Journal of the Royal Statistical Society Series A: Statistics in Society. 185:S547-S572
ISSN: 1467-985X
0964-1998
DOI: 10.1111/rssa.12947
Popis: Information of 1.6 million patients identified as SARS-CoV-2 positive in Mexico is used to understand the relationship between comorbidities, symptoms, hospitalizations and deaths due to the COVID-19 disease. Using the presence or absence of these latter variables a clinical footprint for each patient is created. The risk, expected mortality and the prediction of death outcomes, among other relevant quantities, are obtained and analyzed by means of a multivariate Bernoulli distribution. The proposal considers all possible footprint combinations resulting in a robust model suitable for Bayesian inference.
23 pages and 6 figures
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje