COVID-19 Clinical Footprint to Infer About Mortality
Autor: | Carlos E. Rodríguez, Ramsés H. Mena |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of the Royal Statistical Society Series A: Statistics in Society. 185:S547-S572 |
ISSN: | 1467-985X 0964-1998 |
DOI: | 10.1111/rssa.12947 |
Popis: | Information of 1.6 million patients identified as SARS-CoV-2 positive in Mexico is used to understand the relationship between comorbidities, symptoms, hospitalizations and deaths due to the COVID-19 disease. Using the presence or absence of these latter variables a clinical footprint for each patient is created. The risk, expected mortality and the prediction of death outcomes, among other relevant quantities, are obtained and analyzed by means of a multivariate Bernoulli distribution. The proposal considers all possible footprint combinations resulting in a robust model suitable for Bayesian inference. 23 pages and 6 figures |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |