Disturbance-Disturbance uncertainty relation: The statistical distinguishability of quantum states determines disturbance
Autor: | L. M. Arévalo Aguilar, E. Benítez Rodríguez |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Multidisciplinary
Uncertainty principle Entropy (statistical thermodynamics) lcsh:R lcsh:Medicine Observable Statistical fluctuations 01 natural sciences Article 010305 fluids & plasmas Square root Quantum state 0103 physical sciences Probability distribution lcsh:Q Statistical physics 010306 general physics lcsh:Science Quantum Mathematics |
Zdroj: | Scientific Reports, Vol 8, Iss 1, Pp 1-10 (2018) Scientific Reports |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-018-22336-3 |
Popis: | The Heisenberg uncertainty principle, which underlies many quantum key features, is under close scrutiny regarding its applicability to new scenarios. Using both the Bell-Kochen-Specker theorem establishing that observables do not have predetermined values before measurements and the measurement postulate of quantum mechanics, we propose that in order to describe the disturbance produced by the measurement process, it is convenient to define disturbance by the changes produced on quantum states. Hence, we propose to quantify disturbance in terms of the square root of the Jensen-Shannon entropy distance between the probability distributions before and after the measurement process. Additionally, disturbance and statistical distinguishability of states are fundamental concepts of quantum mechanics that have thus far been unrelated; however, we show that they are intermingled thereupon we enquire into whether the statistical distinguishability of states, caused by statistical fluctuations in the measurement outcomes, is responsible for the disturbance’s magnitude. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |