PHYSIOLOGICAL CHARACTERIZATION OF SIX WHEAT GENOTYPES FOR DROUGHT TOLERANCE

Autor: HanifChachar Muhammad, Zaid Chachar, Q. I. Chachar, Mujtaba Sheikh Muhammad, Sadaruddin Chachar, Nazir Ahmed Chachar
Rok vydání: 2016
Předmět:
Zdroj: International Journal of Research -GRANTHAALAYAH. 4:184-196
ISSN: 2350-0530
2394-3629
DOI: 10.29121/granthaalayah.v4.i2.2016.2828
Popis: Pakistan is one of the most severely affected countries by Global climate change, it is an agriculture based country and its economy (21%) mainly depend on agriculture production. Wheat is the major staple food crop in Pakistan and takes key position in the national economy. It contribute 12.5% share in agriculture and 2.9% in the country’s GDP. Frequent droughts and scarcity of the water severely affecting the wheat production. To fulfill the feed requirements of rapidly growing population, it is necessary to explore the advanced genetic resource that can be able to perform better in changing climate. Six wheat genotypes were tested for their early seedling and physiological performance under different water stress environments. The seeds of six wheat genotypes (Khirman, Chakwal-86, MSH-36, DH-3/48, NIA Amber and NIA-10 10/8) were tested for physiological characterization under pot house experiment for individual genotypic response to water stress. The variance of analysis shows two-way interaction water stress [Control (normal four irrigations) and terminal drought (Soaking dose) and wheat genotypes (P≤ 0.05). Seven physiological indices, including Proline content, Glycine-betaine, Total sugars, Total chlorophyll, Nitrate Reductase Activity ((NRA), Potassium (K+) content, and Osmotic potential (OP) were used to evaluate the drought tolerance of six wheat genotypes. From the current data it was illustrated that, MSH-36 and DH-3/48 exhibited the tolerance followed by, Khirman and Chakwal-86 by maintaining their osmotic potential and accumulation of higher proline and glycine-betaine content that helpful for plant to enhancing their tolerance under water stress and to maintain their growth and development, whereas NIA Amber and NIA-10 10/8 are the drought sensitive genotypes as they could not maintain their osmotic potential under drought stress environment.
Databáze: OpenAIRE