Smoothed Particle Hydrodynamics Simulations of Water Flow in a 90° Pipe Bend
Autor: | Carlos E. Alvarado-Rodríguez, Jaime Klapp, José M. Cela, Leonardo Di G. Sigalotti |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Barcelona Supercomputing Center, Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions |
Rok vydání: | 2021 |
Předmět: |
lcsh:Hydraulic engineering
curved pipes Water flow turbulent pipe flow Geography Planning and Development Numerical simulation 02 engineering and technology Aquatic Science Matemàtiques i estadística::Investigació operativa [Àrees temàtiques de la UPC] 01 natural sciences Biochemistry 010305 fluids & plasmas Physics::Fluid Dynamics Smoothed-particle hydrodynamics lcsh:Water supply for domestic and industrial purposes large-eddy simulation Large-eddy simulation 0203 mechanical engineering lcsh:TC1-978 Particle methods 0103 physical sciences Canonades -- Dinàmica de fluids Secondary flow Water Science and Technology lcsh:TD201-500 Pipelines -- Fluid dynamics Computer simulation Hidrodinàmica Turbulence Laminar flow Turbulent pipe flow Mechanics particle methods Curved pipes secondary flow 020303 mechanical engineering & transports numerical simulation Turbulence kinetic energy Hydrodynamics Enginyeria civil::Enginyeria hidràulica marítima i sanitària [Àrees temàtiques de la UPC] Geology Large eddy simulation |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Water Volume 13 Issue 8 Water, Vol 13, Iss 1081, p 1081 (2021) |
ISSN: | 2073-4441 |
Popis: | The flow through pipe bends and elbows occurs in a wide range of applications. While many experimental data are available for such flows in the literature, their numerical simulation is less abundant. Here, we present highly-resolved simulations of laminar and turbulent water flow in a 90° pipe bend using Smoothed Particle Hydrodynamics (SPH) methods coupled to a Large-Eddy Simulation (LES) model for turbulence. Direct comparison with available experimental data is provided in terms of streamwise velocity profiles, turbulence intensity profiles and cross-sectional velocity maps at different stations upstream, inside and downstream of the pipe bend. The numerical results are in good agreement with the experimental data. In particular, maximum root-mean-square deviations from the experimental velocity profiles are always less than ~1.4%. Convergence to the experimental measurements of the turbulent fluctuations is achieved by quadrupling the resolution necessary to guarantee convergence of the velocity profiles. At such resolution, the deviations from the experimental data are ~0.8%. In addition, the cross-sectional velocity maps inside and downstream of the bend shows that the experimentally observed details of the secondary flow are also very well predicted by the numerical simulations. This research was funded by the European Union’s Horizon 2020 Programme under the ENERXICO Project grant number 828947 and under the Mexican CONACYT-SENER-Hidrocarburos grant number B-S-69926 and by CONACYT under project number 368. |
Databáze: | OpenAIRE |
Externí odkaz: |