Smoothed Particle Hydrodynamics Simulations of Water Flow in a 90° Pipe Bend

Autor: Carlos E. Alvarado-Rodríguez, Jaime Klapp, José M. Cela, Leonardo Di G. Sigalotti
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Barcelona Supercomputing Center, Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
Rok vydání: 2021
Předmět:
lcsh:Hydraulic engineering
curved pipes
Water flow
turbulent pipe flow
Geography
Planning and Development

Numerical simulation
02 engineering and technology
Aquatic Science
Matemàtiques i estadística::Investigació operativa [Àrees temàtiques de la UPC]
01 natural sciences
Biochemistry
010305 fluids & plasmas
Physics::Fluid Dynamics
Smoothed-particle hydrodynamics
lcsh:Water supply for domestic and industrial purposes
large-eddy simulation
Large-eddy simulation
0203 mechanical engineering
lcsh:TC1-978
Particle methods
0103 physical sciences
Canonades -- Dinàmica de fluids
Secondary flow
Water Science and Technology
lcsh:TD201-500
Pipelines -- Fluid dynamics
Computer simulation
Hidrodinàmica
Turbulence
Laminar flow
Turbulent pipe flow
Mechanics
particle methods
Curved pipes
secondary flow
020303 mechanical engineering & transports
numerical simulation
Turbulence kinetic energy
Hydrodynamics
Enginyeria civil::Enginyeria hidràulica
marítima i sanitària [Àrees temàtiques de la UPC]

Geology
Large eddy simulation
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Water
Volume 13
Issue 8
Water, Vol 13, Iss 1081, p 1081 (2021)
ISSN: 2073-4441
Popis: The flow through pipe bends and elbows occurs in a wide range of applications. While many experimental data are available for such flows in the literature, their numerical simulation is less abundant. Here, we present highly-resolved simulations of laminar and turbulent water flow in a 90° pipe bend using Smoothed Particle Hydrodynamics (SPH) methods coupled to a Large-Eddy Simulation (LES) model for turbulence. Direct comparison with available experimental data is provided in terms of streamwise velocity profiles, turbulence intensity profiles and cross-sectional velocity maps at different stations upstream, inside and downstream of the pipe bend. The numerical results are in good agreement with the experimental data. In particular, maximum root-mean-square deviations from the experimental velocity profiles are always less than ~1.4%. Convergence to the experimental measurements of the turbulent fluctuations is achieved by quadrupling the resolution necessary to guarantee convergence of the velocity profiles. At such resolution, the deviations from the experimental data are ~0.8%. In addition, the cross-sectional velocity maps inside and downstream of the bend shows that the experimentally observed details of the secondary flow are also very well predicted by the numerical simulations. This research was funded by the European Union’s Horizon 2020 Programme under the ENERXICO Project grant number 828947 and under the Mexican CONACYT-SENER-Hidrocarburos grant number B-S-69926 and by CONACYT under project number 368.
Databáze: OpenAIRE