A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control

Autor: David Chagné, Thomas Doucen, Robert J. Schaffer, D. Stuart Tustin, John Ross, Wendy Payne, Evelyne Costes, Jeannette Keeling, Karine M. David, Fanny Devoghalaere, Ian C. Hallett, Kularajathevan Gunaseelan, Baptiste Guitton, Ken C Breen, Geegana A. Dayatilake, Robert Diak, Toby John Ling
Přispěvatelé: Plant & Food Research, School of Biological Sciences, University of Auckland [Auckland], Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), School of Plant Science, University of Tasmania [Hobart, Australia] (UTAS), Architecture et Fonctionnement des Espèces Fruitières [AGAP] (AFEF), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), New Zealand Institute for Plant and Food Research Limited, Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), University of Tasmania (UTAS)
Jazyk: angličtina
Rok vydání: 2012
Předmět:
0106 biological sciences
Malus
Cell division
Quantitative Trait Loci
pommier
Plant Science
Quantitative trait locus
Biology
phytohormone
modèle
01 natural sciences
03 medical and health sciences
Auxin
Gene Expression Regulation
Plant

lcsh:Botany
Gene expression
Botany
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology
heterocyclic compounds
Gene
030304 developmental biology
Plant Proteins
arbre fruitier
chemistry.chemical_classification
malus domestica
0303 health sciences
Vegetal Biology
Indoleacetic Acids
auxine
Gene Expression Profiling
fungi
Chromosome Mapping
food and beverages
Ripening
Genomics
fruit
GENETIQUE
biology.organism_classification
Cell biology
lcsh:QK1-989
Gene expression profiling
arboriculture fruitière
chemistry
Genome
Plant

Biologie végétale
010606 plant biology & botany
Research Article
Zdroj: BMC Plant Biology 7 (12), 15 p.. (2012)
BMC Plant Biology
BMC Plant Biology, BioMed Central, 2012, 12 (7), 15 p
BMC Plant Biology, Vol 12, Iss 1, p 7 (2012)
ISSN: 1471-2229
Popis: Background Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. Results High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs) were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106). This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. Conclusions The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3) removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point.
Databáze: OpenAIRE