Robust Nonsmooth Interval-Valued Optimization Problems Involving Uncertainty Constraints

Autor: Izhar Ahmad, Rekha Jaichander, Sluman AL-Homidan, Krishna Kummari
Rok vydání: 2022
Předmět:
Zdroj: Mathematics; Volume 10; Issue 11; Pages: 1787
ISSN: 2227-7390
DOI: 10.3390/math10111787
Popis: In this paper, Karush-Kuhn-Tucker type robust necessary optimality conditions for a robust nonsmooth interval-valued optimization problem (UCIVOP) are formulated using the concept of LU-optimal solution and the generalized robust Slater constraint qualification (GRSCQ). These Karush-Kuhn-Tucker type robust necessary conditions are shown to be sufficient optimality conditions under generalized convexity. The Wolfe and Mond-Weir type robust dual problems are formulated over cones using generalized convexity assumptions, and usual duality results are established. The presented results are illustrated by non-trivial examples.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje