Optimum Parameter Estimation of Tone Mapping Operators by Natural Image Statistics

Autor: Daiki Okazaki, Kohei Inoue, Kiichi Urahama, Kenji Hara
Rok vydání: 2019
Předmět:
Zdroj: Journal of the Institute of Industrial Applications Engineers. 7:106-109
ISSN: 2187-8811
2188-1758
DOI: 10.12792/jiiae.7.106
Popis: In this paper, we propose a method that optimizes the parameters of tone mapping operators by compressing the dynamic range of HDR images using natural image statistics.First, a prior probability model of a natural image is constructed for color natural images based on a generalized Gaussian distribution.Then, an LDR image is generated by converting the HDR image using the tone mapping operator. Next, we generate a normalized histogram of the LDR image using a discrete wavelet transformation.Finally, the optimal parameters of the tone mapping operator are estimated by minimizing the Kullbuck--Leibler divergence of the probability density function and the normalized histogram.Using these parameters, it is possible to generate an LDR image that closely resembles the natural image.
Databáze: OpenAIRE