Hierarchies of Weighted Closed Partially-Ordered Patterns for Enhancing Sequential Data Analysis
Autor: | Agnès Braud, Cristina Nica, Florence Le Ber |
---|---|
Přispěvatelé: | Le Ber, Florence, Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
Sequence Interpretation (logic) Computer science Relational concept analysis 02 engineering and technology Sequential data analysis computer.software_genre Viral test Task (project management) [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] 020204 information systems 0202 electrical engineering electronic engineering information engineering Formal concept analysis 020201 artificial intelligence & image processing Data mining computer |
Zdroj: | Int. Conference on Formal Concept Analysis Int. Conference on Formal Concept Analysis, Jun 2017, Rennes, France Formal Concept Analysis ISBN: 9783319592701 ICFCA |
Popis: | International audience; Discovering sequential patterns in sequence databases is an important data mining task. Recently, hierarchies of closed partially-ordered patterns (cpo-patterns), built directly using Relational Concept Analysis (RCA), have been proposed to simplify the interpretation step by highlighting how cpo-patterns relate to each other. However, there are practical cases (e.g. choosing interesting navigation paths in the obtained hierarchies) when these hierarchies are still insufficient for the expert. To address these cases, we propose to extract hierarchies of more informative cpo-patterns, namely weighted cpo-patterns (wcpo-patterns), by extending the RCA-based approach. These wcpo-patterns capture and explicitly show not only the order on itemsets but also their different influence on the analysed sequences. We illustrate how the proposed wcpo-patterns can enhance sequential data analysis on a toy example. |
Databáze: | OpenAIRE |
Externí odkaz: |