Neural Networks beyond explainability: Selective inference for sequence motifs
Autor: | Antoine Villié, Philippe Veber, Yohann De Castro, Laurent Jacob |
---|---|
Přispěvatelé: | Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Probabilités, statistique, physique mathématique (PSPM), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Genomics (q-bio.GN)
FOS: Computer and information sciences Computer Science - Machine Learning [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] Statistics - Machine Learning FOS: Biological sciences Machine Learning (stat.ML) Quantitative Biology - Genomics [INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] [INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] Machine Learning (cs.LG) |
Popis: | Over the past decade, neural networks have been successful at making predictions from biological sequences, especially in the context of regulatory genomics. As in other fields of deep learning, tools have been devised to extract features such as sequence motifs that can explain the predictions made by a trained network. Here we intend to go beyond explainable machine learning and introduce SEISM, a selective inference procedure to test the association between these extracted features and the predicted phenotype. In particular, we discuss how training a one-layer convolutional network is formally equivalent to selecting motifs maximizing some association score. We adapt existing sampling-based selective inference procedures by quantizing this selection over an infinite set to a large but finite grid. Finally, we show that sampling under a specific choice of parameters is sufficient to characterize the composite null hypothesis typically used for selective inference—a result that goes well beyond our particular framework. We illustrate the behavior of our method in terms of calibration, power and speed and discuss its power/speed trade-off with a simpler data-split strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory genomics, and to more powerful methods for genome wide association studies (GWAS). |
Databáze: | OpenAIRE |
Externí odkaz: |