Spacetimes with a separable Klein-Gordon equation in higher dimensions
Autor: | Pavel Krtouš, Ivan Kolar |
---|---|
Rok vydání: | 2016 |
Předmět: |
High Energy Physics - Theory
Physics Spacetime 010308 nuclear & particles physics FOS: Physical sciences General Relativity and Quantum Cosmology (gr-qc) 01 natural sciences General Relativity and Quantum Cosmology Separable space symbols.namesake High Energy Physics - Theory (hep-th) Quantum mechanics 0103 physical sciences Euclidean geometry Metric (mathematics) symbols Anti-de Sitter space Warped geometry 010306 general physics Klein–Gordon equation Ansatz Mathematical physics |
Zdroj: | Physical Review D. 93 |
ISSN: | 2470-0029 2470-0010 |
DOI: | 10.1103/physrevd.93.024053 |
Popis: | We study spacetimes that lead to a separable Klein-Gordon equation in a general dimension. We introduce an ansatz for the metric in higher dimensions motivated by analogical work by Carter in four dimensions and find solutions of the Klein-Gordon equation. For such a metric we solve the Einstein equations and regain the Kerr-NUT-(A)dS spacetime as one of our results. Other solutions lead to the Einstein-K\"ahler metric of a Euclidean signature. Next we investigate a warped geometry of two Klein-Gordon separable spaces with a properly chosen warped factor. We show that the resulting metric leads also to a separable Klein--Gordon equation and we find the corresponding solutions. Finally, we solve the Einstein equations for the warped geometry and obtain new solutions. Comment: 12 pages, no figures |
Databáze: | OpenAIRE |
Externí odkaz: |