A novel plasmid-Escherichia coli system produces large batch dsRNAs for insect gene silencing
Autor: | Shuo Yan, Jie Shen, Zhong-Zheng Ma, Yan-Long Wei, Hang Zhou |
---|---|
Rok vydání: | 2019 |
Předmět: |
0106 biological sciences
Insecta RNase P Endoribonuclease 01 natural sciences RNA interference Gene expression Escherichia coli Gene silencing Animals Ribonuclease III RNA Double-Stranded Expression vector biology fungi General Medicine Cell biology 010602 entomology RNA silencing Insect Science biology.protein bacteria RNA Interference Agronomy and Crop Science 010606 plant biology & botany Plasmids |
Zdroj: | Pest management scienceREFERENCES. 76(7) |
ISSN: | 1526-4998 |
Popis: | Background RNA interference (RNAi)-based pest management requires efficient delivery and large-batch production of double-stranded (ds)RNA. We previously developed a nanocarrier-mediated dsRNA delivery system that could penetrate an insect's body and efficiently silence gene expression. However, there is a great need to improve the plasmid-Escherichia coli system for the mass production of dsRNA. Here, for efficient dsRNA production, we removed the rnc gene encoding endoribonuclease RNase III in E. coli BL21(DE3) and matched with the RNAi expression vector containing a single T7 promoter. Results The novel pET28-BL21(DE3) RNase III-system was successfully constructed to express vestigial (vg)-dsRNA against Harmonia axyridis. dsRNA was extracted and purified from cell cultures in four E. coil systems, and the yields of dsRNA in pET28-BL21(DE3) RNase III-, pET28-HT115(DE3), L4440-BL21(DE3) RNase III- and L4440-HT115(DE3) were 4.23, 2.75, 0.88 and 1.30 μg mL-1 respectively. The dsRNA expression efficiency of our novel E. coil system was three times that of L4440-HT115(DE3), a widely used dsRNA production system. The RNAi efficiency of dsRNA produced by our system and by biochemical synthesis was comparable when injected into Harmonia axyridis. Conclusion Our system expressed dsRNA more efficiently than the widely used L4440-HT115(DE3) system, and the produced dsRNA showed a high gene-silencing effect. Notably, our pET28-BL21(DE3) RNase III-system provides a novel method for the mass production of dsRNA at low cost and high efficiency, which may promote gene function analysis and RNAi-based pest management. © 2020 Society of Chemical Industry. |
Databáze: | OpenAIRE |
Externí odkaz: |