Inferência bayesiana em modelos lineares mistos t-assimétricos

Autor: Cristian Luis Bayes Rodríguez
Přispěvatelé: Márcia D'Elia Branco
Rok vydání: 2022
Zdroj: Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
DOI: 10.11606/t.45.2009.tde-20220712-123537
Popis: Esta tese compreende um estudo das propriedades da distribuição t-assimétrica fundamental. Uma das vantagens desta distribuição é o fato que permite modelar dados que apresentam assimetria e curtose diferentes da distribuição normal. Modelos lineares mistos são muito utilizados na análise de dados com medidas repetidas porque permitem modelar a correlação entre sujeitos. Uma suposição usual é a normalidade dos efeitos aleatórios e dos erros. Neste trabalho, estendemos este modelo assumindo a distribuição t-assimétrica tanto para os erros como para os efeitos aleatórios, são analisadas várias possíveis formas de estender este modelo, por exemplo, (i) considerando que os erros e os efeitos aleatórios seguem conjuntamente uma distribuição t-assimétrica e (ii) assumindo que eles são independentes e seguem a distribuição t-assimétrica. Resultam como casos especiais destas suposições os modelos simétricos t-Student e normal e o modelo normal-assimétrico. Para obtenção das estimativas desenvolvemos algoritmos do tipo MCMC. Aplicações a diversos conjuntos de dados são apresentadas. not available
Databáze: OpenAIRE