The Constitution and Structure of the Lunar Interior

Autor: Lon L. Hood, Mark A. Wieczorek, Clive R. Neal, Stephanie Tompkins, I. Stewart McCallum, Ben Bussey, Charles K. Shearer, C. A. Peterson, B. Ray Hawke, James G. Williams, Amir Khan, Jeffrey J. Gillis, Matthew E. Pritchard, Bradley L. Jolliff, Benjamin P. Weiss, Kevin Righter
Přispěvatelé: Institut de Physique du Globe de Paris (IPGP), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2006
Předmět:
Zdroj: Reviews in Mineralogy and Geochemistry
Reviews in Mineralogy and Geochemistry, Mineralogical Society, 2006, 60 (1), pp.221-364. ⟨10.2138/rmg.2006.60.3⟩
ISSN: 1529-6466
1943-2666
Popis: The current state of understanding of the lunar interior is the sum of nearly four decades of work and a range of exploration programs spanning that same time period. Missions of the 1960s including the Rangers, Surveyors, and Lunar Orbiters, as well as Earth-based telescopic studies, laid the groundwork for the Apollo program and provided a basic understanding of the surface, its stratigraphy, and chronology. Through a combination of remote sensing, surface exploration, and sample return, the Apollo missions provided a general picture of the lunar interior and spawned the concept of the lunar magma ocean. In particular, the discovery of anorthite clasts in the returned samples led to the view that a large portion of the Moon was initially molten, and that crystallization of this magma ocean gave rise to mafic cumulates that make up the mantle, and plagioclase flotation cumulates that make up the crust (Smith et al. 1970; Wood et al. 1970). This model is now generally accepted and is the framework that unifies our knowledge of the structure and composition of the Moon. The intention of this chapter is to review the major advances that have been made over the past decade regarding the constitution of the Moon’s interior. Much of this new knowledge is a direct result of data acquired from the successful Clementine and Lunar Prospector missions, as well as the analysis of new lunar meteorites. As will be seen, results from these studies have led to many fundamental amendments to the magma ocean model. Much of what we know from sample analyses has been previously summarized elsewhere, and only their most important aspects will be discussed in this chapter. The reader is referred to the relevant chapters in the books Basaltic Volcanism on the Terrestrial Planets (Basaltic Volcanism Study Project 1981), The …
Databáze: OpenAIRE