Random Function Iterations for Consistent Stochastic Feasibility

Autor: Neal Hermer, Anja Sturm, D. Russell Luke
Rok vydání: 2019
Předmět:
Zdroj: Numerical Functional Analysis and Optimization. 40:386-420
ISSN: 1532-2467
0163-0563
Popis: We study the convergence of stochastic fixed point iterations in the consistent case (in the sense of Butnariu and Fl{\aa}m (1995)) in several different settings, under decreasingly restrictive regularity assumptions of the fixed point mappings. The iterations are Markov chains and, for the purposes of this study, convergence is understood in very restrictive terms. We show that sufficient conditions for geometric (linear) convergence in expectation of stochastic projection algorithms presented in Nedi\'c (2011), are in fact necessary for geometric (linear) convergence in expectation more generally of iterated random functions.
Comment: 29 pages, 4 figures
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje