Random Function Iterations for Consistent Stochastic Feasibility
Autor: | Neal Hermer, Anja Sturm, D. Russell Luke |
---|---|
Rok vydání: | 2019 |
Předmět: |
021103 operations research
Control and Optimization Markov chain 010102 general mathematics 0211 other engineering and technologies Random function 02 engineering and technology Fixed point 01 natural sciences Computer Science Applications Optimization and Control (math.OC) Iterated function Signal Processing Convergence (routing) FOS: Mathematics 60J05 52A22 49J55 (Primary) 49J53 65K05 (Secondary) Applied mathematics 0101 mathematics Mathematics - Optimization and Control Projection algorithms Analysis Mathematics |
Zdroj: | Numerical Functional Analysis and Optimization. 40:386-420 |
ISSN: | 1532-2467 0163-0563 |
Popis: | We study the convergence of stochastic fixed point iterations in the consistent case (in the sense of Butnariu and Fl{\aa}m (1995)) in several different settings, under decreasingly restrictive regularity assumptions of the fixed point mappings. The iterations are Markov chains and, for the purposes of this study, convergence is understood in very restrictive terms. We show that sufficient conditions for geometric (linear) convergence in expectation of stochastic projection algorithms presented in Nedi\'c (2011), are in fact necessary for geometric (linear) convergence in expectation more generally of iterated random functions. Comment: 29 pages, 4 figures |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |