Trabecular prostheses
Autor: | Raffaella Aversa, Relly Victoria Virgil Petrescu, Antonio Apicella, Florian Ion Tiberiu Petrescu |
---|---|
Přispěvatelé: | IFToMM, SRR, FISITA, SIAR, AGIR, ARoTMM, SORGING., Aversa, R, Petrescu, Rvv, Apicella, A, Petrescu, Fit |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Independent Journal of Management & Production; Vol 11, No 4 (2020): Independent Journal of Management & Production; 1223-1246 Independent Journal of Management & Production; Vol. 11 No. 4 (2020): Independent Journal of Management & Production; 1223-1246 Independent Journal of Management & Production Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) instacron:IJM&P |
ISSN: | 2236-269X |
Popis: | The complex biomechanics and morphology of the femur proximal epiphysis are presented. This specific region in the human femur is characterized by high flexibility compared to that of other primates, since evolved lighter and longer due to the human vertical position and more balanced loading. The nature and fine morphology of the femur head and its structural behavior have been investigated. Isotropic and orthotropic trabecular structures, which are not present in other primates, have been associated with compression and tension areas of the femur head. These isotropic/orthotropic trabecular morphologies and allocations govern the stress and strain distribution in the overall proximal femur region. Use of femur proper biofidel modeling while enabling the explanation of physiological stress distribution elucidates the critical mechanical role of the trabecular bone that should be accounted in the design of a new innovative more “biologic” prosthetic system. |
Databáze: | OpenAIRE |
Externí odkaz: |