Finite-Blocklength Approximations for Noncoherent Rayleigh Block-Fading Channels
Autor: | Alejandro Lancho, Tobias Koch, Gonzalo Vazquez-Vilar, Johan Östman |
---|---|
Přispěvatelé: | European Commission, Ministerio de Economía y Competitividad (España) |
Rok vydání: | 2019 |
Předmět: |
Telecomunicaciones
060102 archaeology Network packet Computer science business.industry 020206 networking & telecommunications 06 humanities and the arts 02 engineering and technology Code rate Function (mathematics) symbols.namesake Transmission (telecommunications) 0202 electrical engineering electronic engineering information engineering symbols Wireless Electrónica 0601 history and archaeology Fading Rayleigh scattering business Algorithm Computer Science::Information Theory Block (data storage) Communication channel |
Zdroj: | 2019 53rd Asilomar Conference on Signals, Systems, and Computers ACSSC e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid Universidad Carlos III de Madrid (UC3M) e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid instname |
DOI: | 10.1109/ieeeconf44664.2019.9049072 |
Popis: | Proceeding of: 53rd Asilomar Conference on Signals, Systems, and Computers (ACSSC 2019), 3-6 Nov. 2019, Pacific Grove, CA, USA Several emerging wireless communication services and applications have stringent latency requirements, necessitating the transmission of short packets. To obtain performance benchmarks for short-packet wireless communications, it is crucial to study the maximum coding rate as a function of the blocklength, commonly called finite-blocklength analysis. A finiteblocklength analysis can be performed via nonasymptotic bounds or via refined asymptotic approximations. This paper reviews finite-blocklength approximations for the noncoherent Rayleigh block-fading channel. These approximations have negligible computational cost compared to the nonasymptotic bounds and are shown to be accurate for error probabilities as small as 10-8 [super index] and SNRs down to 0 dB. A. Lancho has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 714161) and from the Swedish Research Council under grant 2016-03293. J. O¨ stman has been supported by the Swedish Research Council under grants 2014-6066 and 2016-03293. T. Koch has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 714161) and from the Spanish Ministerio de Economía y Competitividad under grants RYC-2014-16332 and TEC2016-78434-C3-3-R (AEI/FEDER, EU). G. Vazquez-Vilar has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 714161) and from the Spanish Ministerio de Economía y Competitividad under grant TEC2016- 78434-C3-3-R (AEI/FEDER, EU). |
Databáze: | OpenAIRE |
Externí odkaz: |