Active matter in infinite dimensions: Fokker–Planck equation and dynamical mean-field theory at low density
Autor: | Frédéric van Wijland, Francesco Zamponi, Alessandro Manacorda, Thibaut Arnoulx de Pirey |
---|---|
Přispěvatelé: | Systèmes Désordonnés et Applications, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), CNRS UMR 7057 - Laboratoire Matières et Systèmes Complexes (MSC) (MSC), Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Physics [G04] [Physical
chemical mathematical & earth Sciences] FOS: Physical sciences General Physics and Astronomy Condensed Matter - Soft Condensed Matter Space (mathematics) 01 natural sciences 010305 fluids & plasmas 0103 physical sciences Point (geometry) Statistical physics [PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] Physical and Theoretical Chemistry 010306 general physics Condensed Matter - Statistical Mechanics ComputingMilieux_MISCELLANEOUS Physics Steady state Statistical Mechanics (cond-mat.stat-mech) Pair distribution function Disordered Systems and Neural Networks (cond-mat.dis-nn) Hard spheres Condensed Matter - Disordered Systems and Neural Networks Active matter Physique [G04] [Physique chimie mathématiques & sciences de la terre] Soft Condensed Matter (cond-mat.soft) Fokker–Planck equation Transient (oscillation) |
Zdroj: | info:eu-repo/grantAgreement/EC/H2020/723955 Journal of Chemical Physics Journal of Chemical Physics, American Institute of Physics, 2021, 155 (17), pp.174106. ⟨10.1063/5.0065893⟩ |
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0065893⟩ |
Popis: | We investigate the behavior of self-propelled particles in infinite space dimensions by comparing two powerful approaches in many-body dynamics: the Fokker-Planck equation and dynamical mean-field theory. The dynamics of the particles at low densities and infinite persistence time is solved in the steady-state with both methods, thereby proving the consistency of the two approaches in a paradigmatic out-of-equilibrium system. We obtain the analytic expression for the pair distribution function and the effective self-propulsion to first order in the density, confirming the results obtained in a previous paper and extending them to the case of a non-monotonous interaction potential. Furthermore, we obtain the transient behavior of active hard spheres when relaxing from equilibrium to the nonequilibrium steady-state. Our results show how collective dynamics is affected by interactions to first order in the density, and point out future directions for further analytical and numerical solutions of this problem. 25 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |