Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Obba rivulosa and Gelatoporia subvermispora

Autor: Marinovíc, Mila, Di Falco, Marcos, Aguilar Pontes, Maria Victoria, Gorzsás, András, Tsang, Adrian, de Vries, Ronald P., Mäkelä, Miia R., Hildén, Kristiina, Translational Plant Biology, Sub Translational Plant Biology
Přispěvatelé: Westerdijk Fungal Biodiversity Institute, Westerdijk Fungal Biodiversity Institute - Fungal Physiology, Translational Plant Biology, Sub Translational Plant Biology
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Biomolecules; Volume 12; Issue 8; Pages: 1017
Biomolecules, 12(8). Multidisciplinary Digital Publishing Institute (MDPI)
ISSN: 2218-273X
DOI: 10.3390/biom12081017
Popis: The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, during eight-week cultivation on solid spruce wood. Plant cell wall degrading carbohydrate-active enzymes (CAZymes) represented approximately 5% of the total proteins in both species. A core set of orthologous plant cell wall degrading CAZymes was shared between these species on spruce suggesting a conserved plant biomass degradation approach in this clade of basidiomycete fungi. However, differences in time-dependent production of plant cell wall degrading enzymes may be due to differences among initial growth rates of these species on solid spruce wood. The obtained results provide insight into specific enzymes and enzyme sets that are produced during the degradation of solid spruce wood in these fungi. These findings expand the knowledge on enzyme production in nature-mimicking conditions and may contribute to the exploitation of white rot fungi and their enzymes for biotechnological applications. Special Issue: Regulation and Mechanisms of Plant Biomass Degrading Enzymes from Fungi
Databáze: OpenAIRE