Balayage and Convergence of Rational Interpolants
Autor: | Hans Wallin, Amiran Ambroladze |
---|---|
Rok vydání: | 1999 |
Předmět: |
Pure mathematics
Mathematics(all) Numerical Analysis Balayage General Mathematics Applied Mathematics Mathematical analysis MathematicsofComputing_NUMERICALANALYSIS Function (mathematics) Rational function Domain (mathematical analysis) Simply connected space Convergence (routing) ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION Analysis Mathematics Analytic function Interpolation |
Zdroj: | Journal of Approximation Theory. 99(2):230-241 |
ISSN: | 0021-9045 |
DOI: | 10.1006/jath.1998.3317 |
Popis: | We investigate the following problem: For which open simply connected domains do there exist interpolation schemes (a set of interpolation points) such that for any analytic function defined in the domain the corresponding interpolating polynomials converge to the function when the degree of the polynomials tends to infinity? We also study similar problems for rational interpolants. These problems are connected to the balayage (sweeping out) problems of measures. |
Databáze: | OpenAIRE |
Externí odkaz: |