α-Lipoic acid exerts a primary prevention for the cardiac dysfunction in aortocaval fistula-created rat hearts

Autor: Yasuo Matsumura, Tatsuhiko Mori, Kento Kitada, Daisuke Kurumazuka, Mamoru Ohkita, Ryosuke Tanaka, Masanori Takaoka
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Heliyon
Heliyon, Vol 5, Iss 8, Pp e02371-(2019)
ISSN: 2405-8440
Popis: Aim α-Lipoic acid exerts a powerful antioxidant effect by acting as a free radical scavenger and inducing endogenous antioxidants such as vitamin E and glutathione. In the present study, we examined the effects of α-lipoic acid on cardiac dysfunction in rat hearts with aortocaval fistulae. Main methods Aortocaval fistulae were created between the abdominal aorta and inferior vena cava in male rats. Hemodynamic parameters were measured 14 days after surgery using an intravascular pressure transducer, and then these hearts were harvested for tissue weight measurement, pathological evaluation, and mRNA isolation. Results In vehicle-treated rats, left ventricular end-diastolic pressure and left ventricular weight significantly increased at 14 days after fistula creation. Fistula-creation resulted in expression of 4-hydroxy-2-nonenal, NADPH oxidase subunit p67phox and BNP mRNA in a time-dependent manner in the left ventricle. Long-term treatment (initiated 2 days before surgery, and continued for 14 days after fistula creation; days -2 to 14) with α-lipoic acid (30 mg/kg/day) markedly suppressed the increases in left and right ventricular weight, and left ventricular end-diastolic pressure. α-Lipoic acid treatment from days -2 to 14 prominently prevented the expression of 4-hydroxy-2-nonenal and NADPH oxidase subunit p67phox, and significantly raised BNP mRNA levels. Short-term treatment with α-lipoic acid from day - 2 to 7 was effective in preventing cardiac enlargement and dysfunction, similar to long-term treatment, but treatment from days 7–14 was not effective. Conclusions Treatment with α-lipoic acid can prevent cardiac hyperplasia and dysfunction, probably by inhibiting superoxide production and enhancing BNP mRNA expression in an early phase after fistula creation.
Databáze: OpenAIRE