Existence of maximally correlated states
Autor: | S. Camalet |
---|---|
Přispěvatelé: | Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU) |
Rok vydání: | 2018 |
Předmět: |
Physics
Quantum Physics Hilbert space FOS: Physical sciences State (functional analysis) 01 natural sciences Measure (mathematics) 010305 fluids & plasmas symbols.namesake [PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] 0103 physical sciences symbols Statistical physics 010306 general physics Quantum Physics (quant-ph) |
Zdroj: | Physical Review A Physical Review A, American Physical Society, 2018, 98 (5), pp.052306. ⟨10.1103/PhysRevA.98.052306⟩ |
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.48550/arxiv.1808.02453 |
Popis: | International audience; A measure of total correlations cannot increase under deterministic local operations. We show that, for any number of systems, this condition alone does not guarantee the existence of maximally correlated states. Namely, there is no state that simultaneously maximizes all the measures satisfying it. If, in addition, the measures do not increase with probability unity under local measurements, then such states exist for two systems. They are the maximally entangled states. For a larger number of systems, it depends on their Hilbert space dimensions. |
Databáze: | OpenAIRE |
Externí odkaz: |