A starch-based microparticulate system dedicated to diagnostic and therapeutic nuclear medicine applications
Autor: | Benoit Denizot, O. Couturier, Jean-Pierre Benoit, Serge Askienazy, S. Jouaneton, Marie-Claire Venier-Julienne, Francis Bouchet, Franck Lacoeuille, Michelle Sergent, J.-J. Le Jeune, François Hindré |
---|---|
Přispěvatelé: | Micro et Nanomédecines Biomimétiques (MINT), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL), Institut des Sciences Moléculaires de Marseille (ISM2), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: |
Male
Materials science Starch Surface Properties [SDV]Life Sciences [q-bio] Biophysics Bioengineering 01 natural sciences Modified starch Biomaterials 03 medical and health sciences chemistry.chemical_compound 0302 clinical medicine Cadaverine Animals Chelation Microparticle Particle Size Rats Wistar Potato starch Chromatography High Pressure Liquid Analysis of Variance Chromatography Staining and Labeling 010401 analytical chemistry Reproducibility of Results Sterilization Microspheres 3. Good health 0104 chemical sciences Rats chemistry Mechanics of Materials Elemental analysis 030220 oncology & carcinogenesis Yield (chemistry) Ceramics and Composites Degradation (geology) Stress Mechanical Nuclear Medicine Oxidation-Reduction Biomedical engineering |
Zdroj: | Biomaterials Biomaterials, Elsevier, 2011, 32 (31), pp.7999-8009. ⟨10.1016/j.biomaterials.2011.07.007⟩ Biomaterials, 2011, 32 (31), pp.7999-8009. ⟨10.1016/j.biomaterials.2011.07.007⟩ |
ISSN: | 0142-9612 |
DOI: | 10.1016/j.biomaterials.2011.07.007⟩ |
Popis: | International audience; The aim of this work was to develop a new microparticulate system able to form a complex with radionuclides with a high yield of purity for diagnostic or therapeutic applications. Owing to its properties potato starch was chosen as starting material and modified by oxidization and coupling of a ligand (polyamine) enabling modified starch to chelate radionuclides. The choice of suitable experiments was based on a combination of a Rechtschaffner experimental design and a surface response design to determine the influence of experimental parameters and to optimize the final product. Starch-based microparticle formulations from the experimental plans were compared and characterized through particle size analysis, scanning electron microscopy, elemental analysis and, for the most promising formulations, by in vitro labeling stability studies and determination of free polyamine content or in vivo imaging studies. The mechanism of starch-based microparticle degradation was identified by means of size measurements. The results of the Rechtschaffner design showed the positive qualitative effect of the temperature and the duration of coupling reaction whereas surface response analysis clearly showed that, by increasing the oxidization level and starch concentration, the nitrogen content in the final product is increased. In vitro and in vivo characterization led to identification of the best formulation. With a size around 30 mum, high radiochemical purity (over 95%) and a high signal-to-noise ratio (over 600), the new starch-based microparticulate system could be prepared as ready-to-use kits and sterilized without modification of its characteristics, and thus meet the requirement for in vivo diagnostic and therapeutic applications. |
Databáze: | OpenAIRE |
Externí odkaz: |