On non-linear Markov operators: surjectivity vs orthogonal preserving property
Autor: | Farrukh Mukhamedov, Ahmad Fadillah Embong |
---|---|
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Polynomial Algebra and Number Theory Property (philosophy) Markov chain 010102 general mathematics MathematicsofComputing_NUMERICALANALYSIS Dynamical Systems (math.DS) 47H25 37A30 47H60 010103 numerical & computational mathematics 01 natural sciences Functional Analysis (math.FA) Mathematics - Functional Analysis Surjective function Nonlinear system FOS: Mathematics Mathematics - Dynamical Systems 0101 mathematics Mathematics |
Zdroj: | Linear and Multilinear Algebra. 66:2183-2190 |
ISSN: | 1563-5139 0308-1087 |
DOI: | 10.1080/03081087.2017.1389849 |
Popis: | In the present paper, we consider nonlinear Markov operators, namely polynomial stochastic operators. We introduce a notion of orthogonal preserving polynomial stochastic operators. The purpose of this study is to show that surjectivity of nonlinear Markov operators is equivalent to their orthogonal preserving property. 7 pages |
Databáze: | OpenAIRE |
Externí odkaz: |