The Kontorovich–Lebedev integral transformation with a Hankel function kernel in a space of generalized functions of doubly exponential descent

Autor: Y.E. Gutiérrez-Tovar, J.M.R. Méndez-Pérez
Rok vydání: 2007
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications. 328:359-369
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2006.05.034
Popis: A version of the Kontorovich–Lebedev transformation with the Hankel function of second kind in the kernel is investigated in a space of distributions of doubly exponential descent. The inversion theorem is rigorously established making use in some steps of the proof of a relation of this transform with the Laplace one. Finally, the theory developed is illustrated in solving certain type of partial differential equations.
Databáze: OpenAIRE