The Kontorovich–Lebedev integral transformation with a Hankel function kernel in a space of generalized functions of doubly exponential descent
Autor: | Y.E. Gutiérrez-Tovar, J.M.R. Méndez-Pérez |
---|---|
Rok vydání: | 2007 |
Předmět: |
Partial differential equation
Generalized function Laplace transform Kontorovich–Lebedev transform Function space Applied Mathematics Kontorovich–Lebedev transformations Generalized functions Mathematical analysis Mathematics::Classical Analysis and ODEs symbols.namesake Transformation (function) Kernel (statistics) symbols Inversion formula Hankel function Analysis Bessel function Mathematics |
Zdroj: | Journal of Mathematical Analysis and Applications. 328:359-369 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2006.05.034 |
Popis: | A version of the Kontorovich–Lebedev transformation with the Hankel function of second kind in the kernel is investigated in a space of distributions of doubly exponential descent. The inversion theorem is rigorously established making use in some steps of the proof of a relation of this transform with the Laplace one. Finally, the theory developed is illustrated in solving certain type of partial differential equations. |
Databáze: | OpenAIRE |
Externí odkaz: |