Lightning for Energy and Material Uses: A Structured Review
Autor: | Daniel Helman |
---|---|
Rok vydání: | 2020 |
Předmět: |
bepress|Engineering|Civil and Environmental Engineering|Other Civil and Environmental Engineering
engrXiv|Engineering|Other Engineering engrXiv|Engineering bepress|Engineering bepress|Engineering|Civil and Environmental Engineering bepress|Engineering|Electrical and Computer Engineering bepress|Engineering|Electrical and Computer Engineering|Power and Energy engrXiv|Engineering|Electrical and Computer Engineering engrXiv|Engineering|Civil and Environmental Engineering engrXiv|Engineering|Electrical and Computer Engineering|Power and Energy bepress|Engineering|Other Engineering engrXiv|Engineering|Civil and Environmental Engineering|Other Civil and Environmental Engineering |
Popis: | The average atmospheric charge density of Earth is neutral. Charge built up from thunderstorms and lightning phenomena is offset by oceanic surface charging, and offers a source of energy that has not been harnessed broadly. Unfortunately, the total terrestrial energy of the Earth’s atmospheric electrical system is modest (250–500 MW) compared to industrial requirements: Innovations are likely to offer improvements to societal efficiency rather than broad transformations. Direct capture systems located in places with very high occurrence of lightning discharge can generate ≈1 kWh per year on average. Material processing via triggered lightning is limited to techniques that utilize rapid discharges, e.g., metal and glass preprocessing of materials, waste volume reduction, biomass energy conversion, where current prices make plasma‐arc processes prohibitive. Triggered lightning may be used to assist blasting of mountain rock; or as a high‐voltage input for processes such as nuclear fusion. Passive collection of atmospheric electricity is modest but may be used in urban agriculture to increase biomass production. Thunderstorm charge‐separation processes suggest a new class of electricity generators based on kinetic energy and material collision. Ball lightning suggests additional research in dusty plasmas. These methods are all at proof‐of‐concept or early translation stages. |
Databáze: | OpenAIRE |
Externí odkaz: |