Vacancy-Hydrogen Interaction in Niobium during Low-Temperature Baking

Autor: Wenskat, Marc, Cizek, Jakub, Liedke, Maciej Oskar, Butterling, Maik, Bate, Christopher, Hausild, Peter, Hirschmann, Eric, Wagner, Andreas, Weise, Hans
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Scientific reports 10(1), 8300 (2020). doi:10.1038/s41598-020-65083-0
Scientific Reports 10(2020), 8300
Scientific Reports, Vol 10, Iss 1, Pp 1-17 (2020)
Scientific Reports
DOI: 10.1038/s41598-020-65083-0
Popis: Scientific reports 10(1), 8300 (2020). doi:10.1038/s41598-020-65083-0
A recently discovered modified low-temperature baking leads to reduced surface losses and an increase of the accelerating gradient of superconducting TESLA shape cavities. We will show that the dynamics of vacancy-hydrogen complexes at low-temperature baking lead to a suppression of lossy nanohydrides at 2 K and thus a significant enhancement of accelerator performance. Utilizing Doppler broadening Positron Annihilation Spectroscopy, Positron Annihilation Lifetime Spectroscopy and instrumented nanoindentation, samples made from European XFEL niobium sheets were investigated. We studied the evolution of vacancies in bulk samples and in the sub-surface region and their interaction with hydrogen at different temperature levels during in-situ and ex-situ annealing.
Published by Macmillan Publishers Limited, part of Springer Nature, London
Databáze: OpenAIRE