Erratum to: Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis

Autor: Sophie Comtet-Marre, Pascale Mosoni, Pascale Lepercq, Evelyne Forano, Carl J. Yeoman, Bryan A. White, Catherine M.G.C. Renard, Christopher J. Fields, Carine Le Bourvellec, Jordane Despres, Bernard Henrissat, Nicolas Terrapon, Grégory Jubelin, Margret E. Berg Miller
Přispěvatelé: Microbiologie Equipe Qualité et Sécurité des Aliments (INRA), Institut National de la Recherche Agronomique (INRA), Architecture et fonction des macromolécules biologiques (AFMB), Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU), Mosoni, Pascale, SECurité des ALIments et Microbiologie, Institut National de la Recherche Agronomique (INRA)-École nationale d'ingénieurs des techniques des industries agricoles et alimentaires (ENITIAA)-École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
0301 basic medicine
Dietary Fiber
MESH: RNA/methods
Citrus
Pectin
Mutant
Bacteroides xylanisolvens
RNA-Seq
Polysaccharide-Utilization Locus
Bacteroides
MESH: Substances
MESH: Mutagenesis
chemistry.chemical_classification
Genetics
2. Zero hunger
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Structural Biology [q-bio.BM]

digestive
oral
and skin physiology

food and beverages
Pectin degradation
[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]
MESH: Malus/chemistry
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Biomolecules [q-bio.BM]

RNA
Bacterial

Biochemistry
Malus
Pectins
Erratum
MESH: Bacterial/genetics
CAZymes
Research Article
Biotechnology
food.ingredient
030106 microbiology
Mutagenesis (molecular biology technique)
MESH: Pectins/metabolism
Genomics
Computational biology
Biology
Polysaccharide
Human gut
MESH: Genetic Loci
Microbiology
Cell wall
03 medical and health sciences
MESH: Sequence Analysis
food
microbiote
MESH: RNA
[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Genomics [q-bio.GN]

Microbiome
pectine
Sequence Analysis
RNA

MESH: Bacteroides/metabolism
MESH: Transcriptome
RNA-seq
biology.organism_classification
[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology
030104 developmental biology
chemistry
MESH: Citrus/chemistry
Genetic Loci
Mutagenesis
MESH: Bacteroides/genetics
MESH: Dietary Fiber/metabolism
Transcriptome
Bacteria
Function (biology)
Zdroj: BMC Genomics
BMC Genomics, BioMed Central, 2016, 17, pp.147. ⟨10.1186/s12864-016-2472-1⟩
BMC Genomics, BioMed Central, 2016, 27 (17), ⟨10.1186/s12864-016-2758-3⟩
BMC Genomics 1 (17), 14 p.. (2016)
BMC Genomics, 2016, 17 (1), pp.147. ⟨10.1186/s12864-016-2472-1⟩
BMC Genomics, BioMed Central, 2016, 17 (1), pp.147. ⟨10.1186/s12864-016-2472-1⟩
BMC Genomics, 2016, 27 (17), ⟨10.1186/s12864-016-2758-3⟩
ISSN: 1471-2164
Popis: Erratum to: Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis BMC Genomics 2016 17:426 DOI: 10.1186/s12864-016-2758-3 After publication of the original article [1], it came to the authors’ attention that a funding source received by B. Henrissat had been accidently omitted from the Acknowledgements. The following sentence should have been included in the original article; International audience; BACKGROUND: Diet and particularly dietary fibres have an impact on the gut microbiome and play an important role in human health and disease. Pectin is a highly consumed dietary fibre found in fruits and vegetables and is also a widely used additive in the food industry. Yet there is no information on the effect of pectin on the human gut microbiome. Likewise, little is known on gut pectinolytic bacteria and their enzyme systems. This study was undertaken to investigate the mechanisms of pectin degradation by the prominent human gut symbiont Bacteroides xylanisolvens.RESULTS: Transcriptomic analyses of B. xylanisolvens XB1A grown on citrus and apple pectins at mid- and late-log phases highlighted six polysaccharide utilization loci (PUL) that were overexpressed on pectin relative to glucose. The PUL numbers used in this report are those given by Terrapon et al. (Bioinformatics 31(5):647-55, 2015) and found in the PUL database: http://www.cazy.org/PULDB/. Based on their CAZyme composition, we propose that PUL 49 and 50, the most overexpressed PULs on both pectins and at both growth phases, are involved in homogalacturonan (HG) and type I rhamnogalacturonan (RGI) degradation, respectively. PUL 13 and PUL 2 could be involved in the degradation of arabinose-containing side chains and of type II rhamnogalacturonan (RGII), respectively. Considering that HG is the most abundant moiety (>70%) within pectin, the importance of PUL 49 was further investigated by insertion mutagenesis into the susC-like gene. The insertion blocked transcription of the susC-like and the two downstream genes (susD-like/FnIII). The mutant showed strong growth reduction, thus confirming that PUL 49 plays a major role in pectin degradation.CONCLUSION: This study shows the existence of six PULs devoted to pectin degradation by B. xylanisolvens, one of them being particularly important in this function. Hence, this species deploys a very complex enzymatic machinery that probably reflects the structural complexity of pectin. Our findings also highlight the metabolic plasticity of B. xylanisolvens towards dietary fibres that contributes to its competitive fitness within the human gut ecosystem. Wider functional and ecological studies are needed to understand how dietary fibers and especially plant cell wall polysaccharides drive the composition and metabolism of the fibrolytic and non-fibrolytic community within the gut microbial ecosystem.
Databáze: OpenAIRE