Bone modelling processes at the endosteal surface of human femora
Autor: | Burkhard Krempien |
---|---|
Rok vydání: | 1979 |
Předmět: |
Adult
Histology Bone disease Osteoclasts Bone and Bones Pathology and Forensic Medicine Bone cell medicine Humans Renal osteodystrophy Femur Molecular Biology Chronic Kidney Disease-Mineral and Bone Disorder Hyperparathyroidism Osteoblasts Chemistry Endosteal Cell Cell Biology General Medicine Anatomy Middle Aged medicine.disease Resorption Diaphysis Apposition medicine.anatomical_structure Microscopy Electron Scanning Hyperparathyroidism Secondary |
Zdroj: | Virchows Archiv A Pathological Anatomy and Histology. 382:73-88 |
ISSN: | 1432-2307 0340-1227 |
DOI: | 10.1007/bf01102742 |
Popis: | In femoral bone of 10 adult patients without bone disease and of 15 patients with secondary hyperparathyroidism, the endosteal surface of the diaphysis was studied by scanning electron microscopy after non-mineralised organic material had been removed from the endosteal surface by sodium hypochlorite. This technique permits one to analyse the effects of past osteoblastic and osteoclastic activities. Innormal bone, the endosteal envelope shows a highly ordered texture: The main part of the inner surface is represented by fully mineralised smooth surfaces without evidence of apposition or resorption (so called neutral surfaces). In apposition areas, collagen fibers are still incompletely mineralised. Ordered mineral deposits are observed, consisting of spindleshaped calcospherites of uniform size. The resorption areas are sharply delimited. The resorption layer shows a small difference of level with respect to the surrounding neutral surface. Resorption areas consist of numerous lacunae with a smooth bottom. Individual lacunae are encircled by shallow ridges which run almost perpendicularly to the main direction of collagen fibers that have been exposed by resorption. These findings suggest that in normal bone osteoclasts act as a coordinated group of cells. The direction of advance of the resorption area is to some extent influenced by the collagen pattern of bone. In patients withsecondary hyperparathyroidism, domain formation of the endosteal surface can no longer be recognized. The size and shape of calcospherites are extremely heterogeneous, a finding interpreted as evidence of formation of woven bone. Resorption areas are irregularly determined and often resemble worm-eaten wood. The planes of resorption vary in direction and depth and in general resorption cavities penetrate deeper than in normal bone. These findings point to loss of coordinated cell action under the influence of hyperparathyroidism. The observations suggest that in hyperparathyroidism endosteal cells do not respond to local factors which influence endosteal cell activities in modelling processes of normal bone. Such local factors consist of the pattern of collagen and lamellar organisation on one hand and mechanical forces presumably via pizo-electrical potentials, on the other. In hyperpara-thyroidism the interdependence between bone matrix texture and spatial orientation of bone surface lining cell activities is lost. |
Databáze: | OpenAIRE |
Externí odkaz: |