New fractional Heisenberg antiferromagnetic model and solitonic magnetic flux surfaces with normal direction
Autor: | Talat Körpinar, R. Cem Demirkol, Zeliha Korpinar |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physics
Quantitative Biology::Biomolecules Physics and Astronomy (miscellaneous) Condensed matter physics Magnetic field lines magnetic flux surface Magnetic flux Magnetic field Heisenberg antiferromagnetic flow Lorentz force symbols.namesake geometric phase Geometric phase symbols Antiferromagnetism Condensed Matter::Strongly Correlated Electrons Normal |
Zdroj: | International Journal of Geometric Methods in Modern Physics. 18:2150136 |
ISSN: | 1793-6977 0219-8878 |
DOI: | 10.1142/s021988782150136x |
Popis: | In this paper, we study applications of fractional Heisenberg antiferromagnetic model associated with the magnetic [Formula: see text]-lines in the normal direction. Evolution equations of magnetic [Formula: see text]-lines due to inextensible Heisenberg antiferromagnetic flow are computed to construct the soliton surface associated with the inextensible Heisenberg antiferromagnetic flow. Then, their explicit solutions are examined in terms of magnetic and geometric quantities via the conformable fractional derivative method. Finally, we obtain new numerical fractional solutions for nonlinear fractional Schrödinger system with the inextensible Heisenberg antiferromagnetic flow model. |
Databáze: | OpenAIRE |
Externí odkaz: |