Material Decomposition in Spectral CT Using Deep Learning: A Sim2Real Transfer Approach

Autor: Abascal, Juan F P J, Abascal, Juan Fpj, Ducros, Nicolas, Pronina, Valeriya, Rit, Simon, Rodesch, Pierre-Antoine, Broussaud, Thomas, Bussod, Suzanne, Douek, Philippe, Hauptmann, Andreas, Arridge, Simon, PEYRIN, Françoise
Přispěvatelé: Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Rok vydání: 2021
Předmět:
General Computer Science
Computer science
Computed tomography
02 engineering and technology
Iterative reconstruction
transfer learning
Regularization (mathematics)
Convolutional neural network
030218 nuclear medicine & medical imaging
Spectral CT
03 medical and health sciences
0302 clinical medicine
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-IM]Computer Science [cs]/Medical Imaging
0202 electrical engineering
electronic engineering
information engineering

medicine
General Materials Science
Electrical and Electronic Engineering
medicine.diagnostic_test
business.industry
Deep learning
General Engineering
deep learning
Experimental data
Decomposition
Nonlinear system
inverse problem
020201 artificial intelligence & image processing
lcsh:Electrical engineering. Electronics. Nuclear engineering
Artificial intelligence
business
lcsh:TK1-9971
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Algorithm
Zdroj: IEEE Access
IEEE Access, IEEE, In press, ⟨10.1109/ACCESS.2021.3056150⟩
IEEE Access, IEEE, 2021, 9, pp.25632-25647. ⟨10.1109/ACCESS.2021.3056150⟩
IEEE Access, Vol 9, Pp 25632-25647 (2021)
ISSN: 2169-3536
DOI: 10.1109/access.2021.3056150
Popis: International audience; The state-of-the art for solving the nonlinear material decomposition problem in spectral computed tomogra-phy is based on variational methods, but these are computationally slow and critically depend on the particular choice of the regularization functional. Convolutional neural networks have been proposed for addressing these issues. However, learning algorithms require large amounts of experimental data sets. We propose a deep learning strategy for solving the material decomposition problem based on a U-Net architecture and a Sim2Real transfer learning approach where the knowledge that we learn from synthetic data is transferred to a real-world scenario. In order for this approach to work, synthetic data must be realistic and representative of the experimental data. For this purpose, numerical phantoms are generated from human CT volumes of the KiTS19 Challenge dataset, segmented into specic materials (soft tissue and bone). These volumes are projected into sinogram space in order to simulate photon counting data, taking into account the energy response of the scanner. The network is trained to decompose the materials in the projection domain after which we apply any conventional tomographic method to reconstruct the dierent material volumes. The proposed decomposition method is compared to a regularized Gauss-Newton (RGN) method on synthetic data, experimental phantom data and human thorax data.
Databáze: OpenAIRE