A Cell-Based Self-Assembly Approach for the Production of Human Osseous Tissues from Adipose-Derived Stromal/Stem Cells
Autor: | Camille Blanckaert, William P. Clafshenkel, Julie Fradette, François A. Auger, Michel Fortin, Benoit M. Labbé, Todd Galbraith, Fabien Kawecki |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Pathology medicine.medical_specialty Stromal cell Materials science Cellular differentiation Biomedical Engineering Pharmaceutical Science 02 engineering and technology Bone and Bones Biomaterials Extracellular matrix 03 medical and health sciences Tissue engineering medicine Humans Progenitor cell Stem cell transplantation for articular cartilage repair Osteoblasts Tissue Engineering Stem Cells Mesenchymal stem cell Cell Differentiation 021001 nanoscience & nanotechnology Antigens Differentiation Cell biology 030104 developmental biology Adipose Tissue Female Stem cell 0210 nano-technology |
Zdroj: | Advanced healthcare materials. 6(4) |
ISSN: | 2192-2659 |
Popis: | Achieving optimal bone defect repair is a clinical challenge driving intensive research in the field of bone tissue engineering. Many strategies focus on seeding graft materials with progenitor cells prior to in vivo implantation. Given the benefits of closely mimicking tissue structure and function with natural materials, the authors hypothesize that under specific culture conditions, human adipose-derived stem/stromal cells (hASCs) can solely be used to engineer human reconstructed osseous tissues (hROTs) by undergoing osteoblastic differentiation with concomitant extracellular matrix production and mineralization. Therefore, the authors are developing a self-assembly methodology allowing the production of such osseous tissues. Three-dimensional (3D) tissues reconstructed from osteogenically-induced cell sheets contain abundant collagen type I and are 2.7-fold less contractile compared to non-osteogenically induced tissues. In particular, hROT differentiation and mineralization is reflected by a greater amount of homogenously distributed alkaline phosphatase, as well as higher calcium-containing hydroxyapatite (P < 0.0001) and osteocalcin (P < 0.0001) levels compared to non-induced tissues. Taken together, these findings show that hASC-driven tissue engineering leads to hROTs that demonstrate structural and functional characteristics similar to native osseous tissue. These highly biomimetic human osseous tissues will advantageously serve as a platform for molecular studies as well as for future therapeutic in vivo translation. |
Databáze: | OpenAIRE |
Externí odkaz: |