On the Stability of Positive Semigroups
Autor: | del Moral, Pierre, Horton, Emma, Jasra, Ajay |
---|---|
Přispěvatelé: | Méthodes avancées d’apprentissage statistique et de contrôle (ASTRAL), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Naval Group, King Abdullah University of Science and Technology (KAUST), AJ was supported by KAUST baseline funding, ANR-19-CE40-0010,QuAMProcs,Analyse Quantitative de Processus Metastables(2019), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Positive semigroups Boltzmann-Gibbs transformations Dobrushin's ergodic coefficient Probability (math.PR) FOS: Mathematics Foster-Lyapunov conditions Mathematics Subject Classification: Primary: 47D08 47D06 47D07 47H07 Secondary: 47B65 37A30 37M25 60J25 Spectral theorems Contraction inequalities Mathematics - Probability |
Zdroj: | Annals of Applied Probability Annals of Applied Probability, In press |
ISSN: | 1050-5164 2168-8737 |
Popis: | International audience; The stability and contraction properties of positive integral semigroups on Polish spaces are investigated. Our novel analysis is based on the extension of V-norm contraction methods, associated to functionally weighted Banach spaces for Markov semigroups, to positive semigroups. This methodology is applied to a general class of positive and possibly time-inhomogeneous bounded integral semigroups and their normalised versions. The spectral theorems that we develop are an extension of Perron-Frobenius and Krein-Rutman theorems for positive operators to a class of time-varying positive semigroups. In the context of time-homogeneous models, the regularity conditions discussed in the present article appear to be necessary and sufficient condition for the existence of leading eigenvalues. We review and illustrate the impact of these results in the context of positive semigroups arising in transport theory, physics, mathematical biology and signal processing. |
Databáze: | OpenAIRE |
Externí odkaz: |