Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture

Autor: Marjo Yliperttula, Melina Malinen, Arto Urtti, Anne Corlu, Martina Lille, Yan-Rou Lou, Saara W. Kuisma, Christiane Guguen-Guillouzo, Liisa Kanninen, Antti Laukkanen, Madhushree Bhattacharya, Olli Ikkala, Patrick Laurén
Přispěvatelé: Division of Biopharmaceutics and Pharmacokinetics, Centre for Drug Research, VTT Technical Research Centre of Finland (VTT), Foie, métabolismes et cancer, Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Department of Applied Physics, Molecular Materials, Aalto University, UPM-Kymmene Corporation, Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Tissue engineering for drug research, Drug Delivery Unit, Biopharmaceutics Group, Le Corre, Morgane, Department of Applied Physics, Aalto-yliopisto
Jazyk: angličtina
Předmět:
Cell Culture Techniques
Nanofibers
Pharmaceutical Science
02 engineering and technology
01 natural sciences
Nanocellulose
chemistry.chemical_compound
3D cell culture
Tissue engineering
MESH: Tissue Scaffolds
Hepatocyte
MESH: Cellulose
ta214
Tissue Scaffolds
Plant-derived cellulose
Liver cell
Hydrogels
Hep G2 Cells
021001 nanoscience & nanotechnology
BACTERIAL CELLULOSE
DIFFERENTIATION
Liver
MESH: Cell Survival
Bacterial cellulose
Self-healing hydrogels
Female
MESH: Cryoelectron Microscopy
REGENERATIVE MEDICINE
0210 nano-technology
Rheology
MESH: Hydrogels
Biocompatibility
MESH: Microscopy
Electron
Scanning

Cell Survival
Surface Properties
ta221
LINE
MESH: Hep G2 Cells
010402 general chemistry
MESH: Rheology
EXTRACELLULAR-MATRIX
Humans
HEPARG CELLS
Cellulose
GELS
ta218
MESH: Surface Properties
ASSEMBLING PEPTIDE SCAFFOLDS
MESH: Cell Culture Techniques
MESH: Humans
ta114
business.industry
Cryoelectron Microscopy
[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology
IN-VITRO
Nanofiber
[SDV.MHEP.HEG] Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology
MESH: Nanofibers
0104 chemical sciences
Biotechnology
chemistry
TISSUE
Biophysics
Microscopy
Electron
Scanning

business
MESH: Female
MESH: Liver
Zdroj: Journal of Controlled Release
Journal of Controlled Release, Elsevier, 2012, 164 (3), pp.291-8. ⟨10.1016/j.jconrel.2012.06.039⟩
Journal of Controlled Release; Vol 164
Journal of Controlled Release, 2012, 164 (3), pp.291-8. ⟨10.1016/j.jconrel.2012.06.039⟩
Europe PubMed Central
Bhattacharya, M, Malinen, M M, Lauren, P, Lou, Y-R, Kuisma, S W, Kanninen, L, Lille, M, Corlu, A, GuGuen-Guillouzo, C, Ikkala, O, Laukkanen, A, Urtti, A & Yliperttula, M 2012, ' Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture ', Journal of Controlled Release, vol. 164, no. 3, pp. 291-298 . https://doi.org/10.1016/j.jconrel.2012.06.039
ISSN: 0168-3659
DOI: 10.1016/j.jconrel.2012.06.039
Popis: International audience; Over the recent years, various materials have been introduced as potential 3D cell culture scaffolds. These include protein extracts, peptide amphiphiles, and synthetic polymers. Hydrogel scaffolds without human or animal borne components or added bioactive components are preferred from the immunological point of view. Here we demonstrate that native nanofibrillar cellulose (NFC) hydrogels derived from the abundant plant sources provide the desired functionalities. We show 1) rheological properties that allow formation of a 3D scaffold in-situ after facile injection, 2) cellular biocompatibility without added growth factors, 3) cellular polarization, and 4) differentiation of human hepatic cell lines HepaRG and HepG2. At high shear stress, the aqueous NFC has small viscosity that supports injectability, whereas at low shear stress conditions the material is converted to an elastic gel. Due to the inherent biocompatibility without any additives, we conclude that NFC generates a feasible and sustained microenvironment for 3D cell culture for potential applications, such as drug and chemical testing, tissue engineering, and cell therapy.
Databáze: OpenAIRE