Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture
Autor: | Marjo Yliperttula, Melina Malinen, Arto Urtti, Anne Corlu, Martina Lille, Yan-Rou Lou, Saara W. Kuisma, Christiane Guguen-Guillouzo, Liisa Kanninen, Antti Laukkanen, Madhushree Bhattacharya, Olli Ikkala, Patrick Laurén |
---|---|
Přispěvatelé: | Division of Biopharmaceutics and Pharmacokinetics, Centre for Drug Research, VTT Technical Research Centre of Finland (VTT), Foie, métabolismes et cancer, Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Department of Applied Physics, Molecular Materials, Aalto University, UPM-Kymmene Corporation, Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Tissue engineering for drug research, Drug Delivery Unit, Biopharmaceutics Group, Le Corre, Morgane, Department of Applied Physics, Aalto-yliopisto |
Jazyk: | angličtina |
Předmět: |
Cell Culture Techniques
Nanofibers Pharmaceutical Science 02 engineering and technology 01 natural sciences Nanocellulose chemistry.chemical_compound 3D cell culture Tissue engineering MESH: Tissue Scaffolds Hepatocyte MESH: Cellulose ta214 Tissue Scaffolds Plant-derived cellulose Liver cell Hydrogels Hep G2 Cells 021001 nanoscience & nanotechnology BACTERIAL CELLULOSE DIFFERENTIATION Liver MESH: Cell Survival Bacterial cellulose Self-healing hydrogels Female MESH: Cryoelectron Microscopy REGENERATIVE MEDICINE 0210 nano-technology Rheology MESH: Hydrogels Biocompatibility MESH: Microscopy Electron Scanning Cell Survival Surface Properties ta221 LINE MESH: Hep G2 Cells 010402 general chemistry MESH: Rheology EXTRACELLULAR-MATRIX Humans HEPARG CELLS Cellulose GELS ta218 MESH: Surface Properties ASSEMBLING PEPTIDE SCAFFOLDS MESH: Cell Culture Techniques MESH: Humans ta114 business.industry Cryoelectron Microscopy [SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology IN-VITRO Nanofiber [SDV.MHEP.HEG] Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology MESH: Nanofibers 0104 chemical sciences Biotechnology chemistry TISSUE Biophysics Microscopy Electron Scanning business MESH: Female MESH: Liver |
Zdroj: | Journal of Controlled Release Journal of Controlled Release, Elsevier, 2012, 164 (3), pp.291-8. ⟨10.1016/j.jconrel.2012.06.039⟩ Journal of Controlled Release; Vol 164 Journal of Controlled Release, 2012, 164 (3), pp.291-8. ⟨10.1016/j.jconrel.2012.06.039⟩ Europe PubMed Central Bhattacharya, M, Malinen, M M, Lauren, P, Lou, Y-R, Kuisma, S W, Kanninen, L, Lille, M, Corlu, A, GuGuen-Guillouzo, C, Ikkala, O, Laukkanen, A, Urtti, A & Yliperttula, M 2012, ' Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture ', Journal of Controlled Release, vol. 164, no. 3, pp. 291-298 . https://doi.org/10.1016/j.jconrel.2012.06.039 |
ISSN: | 0168-3659 |
DOI: | 10.1016/j.jconrel.2012.06.039 |
Popis: | International audience; Over the recent years, various materials have been introduced as potential 3D cell culture scaffolds. These include protein extracts, peptide amphiphiles, and synthetic polymers. Hydrogel scaffolds without human or animal borne components or added bioactive components are preferred from the immunological point of view. Here we demonstrate that native nanofibrillar cellulose (NFC) hydrogels derived from the abundant plant sources provide the desired functionalities. We show 1) rheological properties that allow formation of a 3D scaffold in-situ after facile injection, 2) cellular biocompatibility without added growth factors, 3) cellular polarization, and 4) differentiation of human hepatic cell lines HepaRG and HepG2. At high shear stress, the aqueous NFC has small viscosity that supports injectability, whereas at low shear stress conditions the material is converted to an elastic gel. Due to the inherent biocompatibility without any additives, we conclude that NFC generates a feasible and sustained microenvironment for 3D cell culture for potential applications, such as drug and chemical testing, tissue engineering, and cell therapy. |
Databáze: | OpenAIRE |
Externí odkaz: |