The epimorphic hull of C(X)
Autor: | R. Raphael, R. Grant Woods |
---|---|
Rok vydání: | 2000 |
Předmět: |
Principal ideal ring
Discrete mathematics Reduced ring Mathematics::Commutative Algebra 010102 general mathematics Semiprime ring 0102 computer and information sciences Commutative ring Epimorphic hull of a ring 01 natural sciences Rings of quotients C(X) Combinatorics Regular ring Primitive ring 010201 computation theory & mathematics Von Neumann regular ring Geometry and Topology 0101 mathematics Quotient ring Mathematics |
Zdroj: | Topology and its Applications. 105(1):65-88 |
ISSN: | 0166-8641 |
DOI: | 10.1016/s0166-8641(99)00036-x |
Popis: | The epimorphic hull H(A) of a commutative semiprime ring A is defined to be the smallest von Neumann regular ring of quotients of A . Let X denote a Tychonoff space. In this paper the structure of H(C(X)) is investigated, where C(X) denotes the ring of continuous real-valued functions with domain X . Spaces X that have a regular ring of quotients of the form C(Y) are characterized, and a “minimum” such Y is found. Necessary conditions for H(C(X)) to equal C(Y) for some Y are obtained. |
Databáze: | OpenAIRE |
Externí odkaz: |