Frequent epigenetic inactivation of the RASSF1A tumour suppressor gene in testicular tumours and distinct methylation profiles of seminoma and nonseminoma testicular germ cell tumours
Autor: | Marcus Rothe, Farida Latif, Angelo Agathanggelou, Sofia Honorio, Nicolas Wernert, Eamonn R. Maher |
---|---|
Rok vydání: | 2003 |
Předmět: |
Male
endocrine system Cancer Research Tumor suppressor gene Adenomatous Polyposis Coli Protein Biology medicine.disease_cause O(6)-Methylguanine-DNA Methyltransferase Testicular Neoplasms FHIT Genetics medicine Humans Genes Tumor Suppressor Epigenetics Gene Silencing Promoter Regions Genetic neoplasms Molecular Biology Tumor Suppressor Proteins Cancer Methylation Seminoma DNA Methylation Neoplasms Germ Cell and Embryonal medicine.disease Cadherins Acid Anhydride Hydrolases Neoplasm Proteins Gene Expression Regulation Neoplastic DNA methylation Cancer research Carcinogenesis |
Zdroj: | Oncogene. 22(3) |
ISSN: | 0950-9232 |
Popis: | Testicular germ cell tumours (TGCTs) are histologically heterogeneous neoplasms with variable malignant potential. Previously, we demonstrated frequent 3p allele loss in TGCTs, and recently we and others have shown that the 3p21.3 RASSF1A tumour suppressor gene (TSG) is frequently inactivated by promoter hypermethylation in a wide range of cancers including lung, breast, kidney and neuroblastoma. In order to investigate the role of epigenetic events in the pathogenesis of TGCTs, we analysed the promoter methylation status of RASSF1A and nine other genes that may be epigenetically inactivated in cancer (p16(INK4A), APC, MGMT, GSTP1, DAPK, CDH1, CDH13, RARbeta and FHIT) in 24 primary TGCTs (28 histologically distinct components). RASSF1A methylation was detected in four of 10 (40%) seminomas and 15 of 18 (83%) nonseminoma TGCT (NSTGCT) components (P=0.0346). None of the other nine candidate genes were methylated in seminomas, but MGMT (44%), APC (29%) and FHIT (29%) were frequently methylated in NSTGCTs. Furthermore, in two mixed germ cell tumours, the NSTGCT component for one demonstrated RASSF1A, APC and CDH13 promoter methylation, but the seminoma component was unmethylated for all genes analysed. In the second mixed germ cell tumour, the NSTGCT component was methylated for RASSF1A and MGMT, while the seminoma component was methylated only for RASSF1A. In all, 61% NSTGCT components but no seminoma samples demonstrated promoter methylation at two or more genes (P=0.0016). These findings are consistent with a multistep model for TGCT pathogenesis in which RASSF1A methylation occurs early in tumorigenesis and additional epigenetic events characterize progression from seminoma to NSTGCTs. |
Databáze: | OpenAIRE |
Externí odkaz: |