The asymptotic leading term for maximum rank of ternary forms of a given degree

Autor: Alessandro De Paris
Přispěvatelé: DE PARIS, Alessandro
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Popis: Let $\operatorname{r_{max}}(n,d)$ be the maximum Waring rank for the set of all homogeneous polynomials of degree $d>0$ in $n$ indeterminates with coefficients in an algebraically closed field of characteristic zero. To our knowledge, when $n,d\ge 3$, the value of $\operatorname{r_{max}}(n,d)$ is known only for $(n,d)=(3,3),(3,4),(3,5),(4,3)$. We prove that $\operatorname{r_{max}}(3,d)=d^2/4+O(d)$ as a consequence of the upper bound $\operatorname{r_{max}}(3,d)\le\left\lfloor\left(d^2+6d+1\right)/4\right\rfloor$.
v1: 10 pages. v2: extended introduction and some mistakes corrected
Databáze: OpenAIRE