Analysis of methods for the Maxwell-random Lorentz model
Autor: | Andrew Fisher, Nathan L. Gibson, Jacqueline Alvarez |
---|---|
Rok vydání: | 2020 |
Předmět: |
Electromagnetic field
Physics Polynomial chaos FDTD lcsh:Mathematics Applied Mathematics Order (ring theory) Random parameters Polynomial Chaos lcsh:QA1-939 Stability (probability) Maxwell’s equations Hyperboloid model Scheme (mathematics) Dispersion (optics) Statistical physics Lorentz polarization |
Zdroj: | Results in Applied Mathematics, Vol 8, Iss, Pp 100098-(2020) |
ISSN: | 2590-0374 |
DOI: | 10.1016/j.rinam.2020.100098 |
Popis: | Maxwell’s equations describes the propagation of electromagnetic fields in materials. Constitutive laws are used to describe the material response to the fields. We extend a novel computational framework involving Polynomial Chaos Expansions to the Lorentz model including random parameters. We perform stability and dispersion analyses for the resulting fully discrete schemes utilizing the second order Yee scheme in two spatial dimensions. |
Databáze: | OpenAIRE |
Externí odkaz: |