A new universal resample-stable bootstrap-based stopping criterion for PLS component construction

Autor: Frédéric Bertrand, Myriam Maumy-Bertrand, Nicolas Meyer, Jérémy Magnanensi
Přispěvatelé: Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biostatistique, CHU Strasbourg, Progression tumorale et microenvironnement. Approches translationnelles et épidémiologie, Université de Strasbourg (UNISTRA)-CHU Strasbourg-Les Hôpitaux Universitaires de Strasbourg (HUS)-Institut Régional du Cancer-Centre Paul Strauss : Centre Régional de Lutte contre le Cancer (CRLCC), Labex IRMIA
Rok vydání: 2016
Předmět:
Zdroj: Statistics and Computing. 27:757-774
ISSN: 1573-1375
0960-3174
Popis: We develop a new robust stopping criterion in Partial Least Squares Regressions (PLSR) components construction characterised by a high level of stability. This new criterion is defined as a universal one since it is suitable both for PLSR and its extension to Generalized Linear Regressions (PLSGLR). This criterion is based on a non-parametric bootstrap process and has to be computed algorithmically. It allows to test each successive components on a preset significant level alpha. In order to assess its performances and robustness with respect to different noise levels, we perform intensive datasets simulations, with a preset and known number of components to extract, both in the case n>p (n being the number of subjects and p the number of original predictors), and for datasets with n
Comment: 31 pages, 20 figures
Databáze: OpenAIRE