A qualitatively validated mathematical-computational model of the immune response to the yellow fever vaccine
Autor: | Guilherme Côrtes Fernandes, Marcelo Lobosco, C. R. B. Bonin, Rodrigo Weber dos Santos |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
lcsh:Immunologic diseases. Allergy 030106 microbiology Immunology Yellow fever vaccine Viremia Booster dose CD8-Positive T-Lymphocytes Antibodies Viral 03 medical and health sciences Immune system Immunity medicine Humans biology Yellow fever Vaccination Yellow Fever Vaccine Computational modeling Models Theoretical medicine.disease Computational vaccinology 030104 developmental biology biology.protein Mathematical modeling Antibody Yellow fever virus lcsh:RC581-607 Algorithms Ordinary differential equations medicine.drug Research Article |
Zdroj: | BMC Immunology, Vol 19, Iss 1, Pp 1-17 (2018) BMC Immunology |
ISSN: | 1471-2172 |
Popis: | Background Although a safe and effective yellow fever vaccine was developed more than 80 years ago, several issues regarding its use remain unclear. For example, what is the minimum dose that can provide immunity against the disease? A useful tool that can help researchers answer this and other related questions is a computational simulator that implements a mathematical model describing the human immune response to vaccination against yellow fever. Methods This work uses a system of ten ordinary differential equations to represent a few important populations in the response process generated by the body after vaccination. The main populations include viruses, APCs, CD8+ T cells, short-lived and long-lived plasma cells, B cells and antibodies. Results In order to qualitatively validate our model, four experiments were carried out, and their computational results were compared to experimental data obtained from the literature. The four experiments were: a) simulation of a scenario in which an individual was vaccinated against yellow fever for the first time; b) simulation of a booster dose ten years after the first dose; c) simulation of the immune response to the yellow fever vaccine in individuals with different levels of naïve CD8+ T cells; and d) simulation of the immune response to distinct doses of the yellow fever vaccine. Conclusions This work shows that the simulator was able to qualitatively reproduce some of the experimental results reported in the literature, such as the amount of antibodies and viremia throughout time, as well as to reproduce other behaviors of the immune response reported in the literature, such as those that occur after a booster dose of the vaccine. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |