Efficient parallelization of GMM background subtraction algorithm on a multi-core platform for moving objects detection

Autor: Abdelkrim Hamzaoui, Said Belkouch, Dominique Houzet, Sylvain Huet, Lhoussein Mabrouk, Yahya Zennayi
Přispěvatelé: GIPSA - Architecture, Géométrie, Perception, Images, Gestes (GIPSA-AGPIG), Département Images et Signal (GIPSA-DIS), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Cadi Ayyad [Marrakech] (UCA), MAScIR Foundation, ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP 2018)
4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP 2018), Mar 2018, Sousse, Tunisia. ⟨10.1109/ATSIP.2018.8364449⟩
ATSIP
Popis: Gaussian Mixture Model background subtraction (GMM) method is nowadays used in many moving object detection applications. This common approach is performed statistically on each single pixel in the captured frames. Thus, it is well suitable for parallel processing. With the great evolution of multi-core platforms, the parallelization of this algorithm is the most efficient way for its real-time acceleration. In this paper, we propose an efficient multi-threading parallelization of GMM on a 16-cores Intel node using the OpenMP framework. This is carried out by removing data dependencies between different threads which slows down the system; balancing their computational load and avoiding some hidden errors when measuring the performance. The use of a suitable compile environment and options showed that high scalability and linear speedup are achieved even when high number of cores is used.
Databáze: OpenAIRE