A data-driven approach to predicting diabetes and cardiovascular disease with machine learning
Autor: | Stacey Miertschin, Somya D. Mohanty, Amber Young, An Dinh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Male
Health analytics Support Vector Machine National Health and Nutrition Examination Survey Health Informatics 02 engineering and technology lcsh:Computer applications to medicine. Medical informatics Machine learning computer.software_genre Logistic regression Machine Learning 03 medical and health sciences 0302 clinical medicine Predictive Value of Tests Ensemble learning 0202 electrical engineering electronic engineering information engineering Diabetes Mellitus Medicine Electronic Health Records Humans 030212 general & internal medicine Receiver operating characteristic business.industry Health Policy Feature learning Nutrition Surveys 3. Good health Computer Science Applications Random forest Support vector machine Logistic Models ROC Curve Cardiovascular Diseases lcsh:R858-859.7 020201 artificial intelligence & image processing Female Gradient boosting Artificial intelligence business computer Research Article |
Zdroj: | BMC Medical Informatics and Decision Making BMC Medical Informatics and Decision Making, Vol 19, Iss 1, Pp 1-15 (2019) |
ISSN: | 1472-6947 |
Popis: | Background Diabetes and cardiovascular disease are two of the main causes of death in the United States. Identifying and predicting these diseases in patients is the first step towards stopping their progression. We evaluate the capabilities of machine learning models in detecting at-risk patients using survey data (and laboratory results), and identify key variables within the data contributing to these diseases among the patients. Methods Our research explores data-driven approaches which utilize supervised machine learning models to identify patients with such diseases. Using the National Health and Nutrition Examination Survey (NHANES) dataset, we conduct an exhaustive search of all available feature variables within the data to develop models for cardiovascular, prediabetes, and diabetes detection. Using different time-frames and feature sets for the data (based on laboratory data), multiple machine learning models (logistic regression, support vector machines, random forest, and gradient boosting) were evaluated on their classification performance. The models were then combined to develop a weighted ensemble model, capable of leveraging the performance of the disparate models to improve detection accuracy. Information gain of tree-based models was used to identify the key variables within the patient data that contributed to the detection of at-risk patients in each of the diseases classes by the data-learned models. Results The developed ensemble model for cardiovascular disease (based on 131 variables) achieved an Area Under - Receiver Operating Characteristics (AU-ROC) score of 83.1% using no laboratory results, and 83.9% accuracy with laboratory results. In diabetes classification (based on 123 variables), eXtreme Gradient Boost (XGBoost) model achieved an AU-ROC score of 86.2% (without laboratory data) and 95.7% (with laboratory data). For pre-diabetic patients, the ensemble model had the top AU-ROC score of 73.7% (without laboratory data), and for laboratory based data XGBoost performed the best at 84.4%. Top five predictors in diabetes patients were 1) waist size, 2) age, 3) self-reported weight, 4) leg length, and 5) sodium intake. For cardiovascular diseases the models identified 1) age, 2) systolic blood pressure, 3) self-reported weight, 4) occurrence of chest pain, and 5) diastolic blood pressure as key contributors. Conclusion We conclude machine learned models based on survey questionnaire can provide an automated identification mechanism for patients at risk of diabetes and cardiovascular diseases. We also identify key contributors to the prediction, which can be further explored for their implications on electronic health records. |
Databáze: | OpenAIRE |
Externí odkaz: |