S-principal ideal multiplication modules

Autor: Emel Aslankarayiğit Uğurlu, Suat Koç, Ünsal Tekir
Přispěvatelé: Aslankarayiğit Uğurlu E., Koç S., Tekir Ü.
Rok vydání: 2023
Předmět:
Zdroj: Communications in Algebra. 51:2510-2519
ISSN: 1532-4125
0092-7872
Popis: In this paper, we studyS-Principal ideal multiplication modules. LetA \" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">A A be a commutative ring with1≠0, S⊆A\" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">1≠0, S⊆A1≠0, S⊆Aa multiplicatively closed set andM \" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">M M anA-module. A submoduleNofMis said to be anS-multipleofMif there exists∈S\" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">s∈Ss∈Sand a principal idealIofAsuch thatsN⊆IM⊆N\" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">sN⊆IM⊆NsN⊆IM⊆N.M \" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">M M is said to be anS-principal ideal multiplication moduleif every submoduleN \" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">N N ofM \" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">M M is anS-multiple ofM. Various examples and properties ofS-principal ideal multiplication modules are given. We investigate the conditions under which the trivial extensionA⋉M\" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">A⋉MA⋉Mis anS⋉0\" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">S⋉0S⋉0-principal ideal ring. Also, we prove Cohen type theorem forS-principal ideal multiplication modules in terms ofS-prime submodules.
Databáze: OpenAIRE