Injective Hopf bimodules, cohomologies of infinite dimensional Hopf algebras and graded-commutativity of the Yoneda product
Autor: | Rachel Taillefer |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2002 |
Předmět: |
Pure mathematics
Algebra and Number Theory Cup-product Quantum group Mathematics::Rings and Algebras Gerstenhaber algebra K-Theory and Homology (math.KT) Representation theory of Hopf algebras 16E40 16W30 57T05 Hopf algebra Quasitriangular Hopf algebra Mathematics::Algebraic Topology Cohomology Algebra Cup product Mathematics::K-Theory and Homology Mathematics::Category Theory Mathematics::Quantum Algebra Mathematics - K-Theory and Homology FOS: Mathematics Bimodule Hopf bimodules Mathematics |
Popis: | We prove that the category of Hopf bimodules over any Hopf algebra has enough injectives, which enables us to extend some results on the unification of Hopf bimodule cohomologies of [T1,T2] to the infinite dimensional case. We also prove that the cup-product defined on these cohomologies is graded-commutative. 17 pages; some proofs changed, references deleted |
Databáze: | OpenAIRE |
Externí odkaz: |