Non-sequential and multi-step splicing of the dystrophin transcript
Autor: | Irina Pulyakhina, Nisha Verwey, Yavuz Ariyurek, Isabella Gazzoli, Peter A C 't Hoen, Annemieke Aartsma-Rus, Jeroen F.J. Laros |
---|---|
Rok vydání: | 2015 |
Předmět: |
0301 basic medicine
Duchenne muscular dystrophy RNA Splicing Exonic splicing enhancer recursive splicing Biology order of splicing Cell Line Dystrophin 03 medical and health sciences Exon Splicing factor splicing Humans exon blocks Molecular Biology Gene Library Genetics next generation sequencing Splice site mutation Sequence Analysis RNA Alternative splicing Intron Computational Biology High-Throughput Nucleotide Sequencing Cell Biology Group II intron Capture-pre-mRNA-seq intron removal 030104 developmental biology RNA splicing nested splicing RNA Splice Sites Research Paper |
Zdroj: | RNA Biology, 13(3), 290-305 RNA Biology |
DOI: | 10.6084/m9.figshare.1623212.v1 |
Popis: | The dystrophin protein encoding DMD gene is the longest human gene. The 2.2 Mb long human dystrophin transcript takes 16 hours to be transcribed and is co-transcriptionally spliced. It contains long introns (24 over 10kb long, 5 over 100kb long) and the heterogeneity in intron size makes it an ideal transcript to study different aspects of the human splicing process. Splicing is a complex process and much is unknown regarding the splicing of long introns in human genes. Here, we used ultra-deep transcript sequencing to characterize splicing of the dystrophin transcripts in 3 different human skeletal muscle cell lines, and explored the order of intron removal and multi-step splicing. Coverage and read pair analyses showed that around 40% of the introns were not always removed sequentially. Additionally, for the first time, we report that non-consecutive intron removal resulted in 3 or more joined exons which are flanked by unspliced introns and we defined these joined exons as an exon block. Lastly, computational and experimental data revealed that, for the majority of dystrophin introns, multistep splicing events are used to splice out a single intron. Overall, our data show for the first time in a human transcript, that multi-step intron removal is a general feature of mRNA splicing. |
Databáze: | OpenAIRE |
Externí odkaz: |