A major interspecies difference in the ionic selectivity of megakaryocyte Ca2+-activated channels sensitive to the TMEM16F inhibitor CaCCinh-A01
Autor: | Martyn P. Mahaut-Smith, Kirk A. Taylor |
---|---|
Rok vydání: | 2019 |
Předmět: |
PHOSPHATIDYLSERINE EXPOSURE
0301 basic medicine Phospholipid scramblase 030204 cardiovascular system & hematology ACTIVATION megakaryocyte phospholipid scrambling Mice 0302 clinical medicine Phospholipid scrambling Megakaryocyte Scott syndrome Platelet Phospholipid Transfer Proteins platelet Chemistry Hematology General Medicine Membrane medicine.anatomical_structure Chloride channel CL-CHANNEL ANOCTAMIN 6 Life Sciences & Biomedicine Megakaryocytes EXPRESSION Anoctamins HUMAN PLATELETS 03 medical and health sciences medicine Animals Humans CELL Ion channel Science & Technology CONDUCTANCE CHLORIDE CHANNELS TMEM16F 1103 Clinical Sciences Biological Transport Cell Biology medicine.disease Rats 030104 developmental biology Cardiovascular System & Hematology Biophysics Calcium Plenary Paper and Short Communication MEMBRANE |
Zdroj: | Platelets |
ISSN: | 1369-1635 0953-7104 |
DOI: | 10.1080/09537104.2019.1595560 |
Popis: | TMEM16F is a surface membrane protein critical for platelet procoagulant activity, which exhibits both phospholipid scramblase and ion channel activities following sustained elevation of cytosolic Ca2+. The extent to which the ionic permeability of TMEM16F is important for platelet scramblase responses remains controversial. To date, only one study has reported the electrophysiological properties of TMEM16F in cells of platelet/megakaryocyte lineage, which observed cation-selectivity within excised patch recordings from murine marrow-derived megakaryocytes. This contrasts with reports using whole-cell recordings that describe this channel as displaying either selectivity for anions or being relatively non-selective amongst the major physiological monovalent ions. We have studied TMEM16F expression and channel activity in primary rat and mouse megakaryocytes and the human erythroleukemic (HEL) cell line that exhibits megakaryocytic surface markers. Immunocytochemical analysis was consistent with surface TMEM16F expression in cells from all three species. Whole-cell recordings in the absence of K+-selective currents revealed an outwardly rectifying conductance activated by a high intracellular Ca2+ concentration in all three species. These currents appeared after 5–6 minutes and were blocked by CaCCinh-A01, properties typical of TMEM16F. Ion substitution experiments showed that the underlying conductance was predominantly Cl–-permeable in rat megakaryocytes and HEL cells, yet non-selective between monovalent anions and cations in mouse megakaryocytes. In conclusion, the present study further highlights the difference in ionic selectivity of TMEM16F in platelet lineage cells of the mouse compared to other mammalian species. This provides additional support for the ionic “leak” hypothesis that the scramblase activity of TMEM16F does not rely upon its ability to conduct ions of a specific type. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |