Self-affine sets with fibered tangents

Autor: Eino Rossi, Henna Koivusalo, Antti Käenmäki
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Kaenmaki, A, Koivusalo, H L L & Rossi, E 2017, ' Self-affine sets with fibred tangents ', Ergodic Theory Dynamical Systems, vol. 37, no. 6, pp. 1915–1934 . https://doi.org/10.1017/etds.2015.130
Popis: We study tangent sets of strictly self-affine sets in the plane. If a set in this class satisfies the strong separation condition and projects to a line segment for sufficiently many directions, then for each generic point there exists a rotation $\mathcal O$ such that all tangent sets at that point are either of the form $\mathcal O((\mathbb R \times C) \cap B(0,1))$, where $C$ is a closed porous set, or of the form $\mathcal O((\ell \times \{ 0 \}) \cap B(0,1))$, where $\ell$ is an interval.
17 pages, 5 figures
Databáze: OpenAIRE